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Abstract

Elucidating the causes of observed patterns of living diversity remains a central goal

of ecology. To understand patterns of terrestrial arthropod diversity on Kenai National

Wildlife Refuge (KENWR), arthropods were collected by sweep net on 255 100m2 plots

systematically distributed at 4.8km intervals across KENWR. I calculated three indices

of diversity for 90 families conveying information on richness and evenness for each site.

Using Bayesian Model Averaging, I found all indices were strongly influenced by site

productivity, local climate, time of sampling and plant species richness. Physiographic

variables were less important than climate for determining arthropod distributions.

Because many species are expected to alter their distributions in response to ac-

celerated climate change, I assessed the use of occupancy models for monitoring those

shifts on KENWR. I compared rotating panel and periodic census sampling designs us-

ing Monte-Carlo simulations given a range of occupancy and detectability values. Both

designs estimated detectability within single visits and provided reasonable precision

and accuracy on occupancy estimates of species with detection probabilities ≥ 0.5, but

the rotating panel design was preferred because it yielded information at shorter time

intervals. I recommended adding sites sampled in consecutive seasons to better estimate

local extinction and colonization rates.
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Chapter 1

Arthropod Family Diversity

1.1 Introduction

Justifications for Studying Arthropod Diversity on the Kenai National Wildlife

Refuge

Explaining observed patterns of living diversity remains a central goal of ecology despite over

a century of study. Since latitudinal diversity gradients were described in the nineteenth

century (Wallace, 1853, 1878; Bates, 1862), numerous studies have documented relation-

ships between diversity and latitude, elevation, productivity, and other factors (see Fisher,

1960; Pianka, 1966; Currie, 1991; Rosenzweig, 1995; Lomolino, 2001; Mittelbach et al., 2001;

Whittaker et al., 2001; Hillebrand, 2004; McCain, 2005; Mittelbach et al., 2007; Grytnes and

McCain, 2007, for reviews and meta-analyses), but satisfactory explanations of the observed

patterns remain elusive (Whittaker et al., 2001). Such straightforward questions as “How is

diversity related to productivity?” and “Why does the relationship of diversity to elevation

vary?” are still contentious, with multiple competing hypotheses. Accordingly, Whittaker

et al. (2001) emphasized the need for a synthesis of hypotheses to explain observed patterns

of diversity.

Besides explaining observed patterns, the study of diversity has important applications in

conservation strategy and for assessment of ecosystem health. Fleishman et al. (2000) argued

that documenting patterns of diversity and elucidating the causes of the observed patterns

were essential for conservation planning (but see Groves, 2003, for a different opinion).

Since ecosystem stability (McCann, 2000), ecosystem function (Hooper et al., 2005) and

resilience (Chapin et al., 2000) are generally correlated with diversity, species richness is

itself considered to be a good indicator of the health of a system (Magurran, 1988). Under
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this premise, taxon richness has been used as an indicator in environmental assessment

studies (e.g., Bechtel and Copeland, 1970; Egloff and Brakel, 1973; Wu, 1982; Roth et al.,

1994; Karr and Kimberling, 2003).

The simple fact that arthropods comprise the vast majority of diversity in terrestrial

systems (Finnamore, 1996) begs their use in studies of diversity. On land, not only do

arthropods generally exceed vertebrates in terms of diversity, ubiquity, and biomass, they

are also usually more important in terms of ecosystem function (Wilson, 1987). Insects are

also important in terms of ecological services rendered (Losey and Vaughan, 2006). Ter-

restrial arthropods act as decomposers of litter, wood, carcasses, and scat; herbivores of

vascular plants, non-vascular plants, and lichens; fungivores; pollinators; dispersers of seeds

and other propagules; disease vectors; predators; and parasites. The variety of ecologi-

cal roles played by arthropods and their ecological importance make terrestrial arthropods

particularly meaningful candidates for the study of biodiversity.

In addition to scientific merit and usefulness of arthropod diversity studies, land man-

agers may be required by law to gain an understanding of invertebrate diversity. For ex-

ample, National Wildlife Refuges in Alaska were mandated in the Alaska National Interest

Lands Conservation Act (ANILCA) of 1980, “to conserve fish and wildlife populations in

their natural diversity,” where “fish and wildlife” was defined as “any member of the animal

kingdom including without limitation any mammal, fish, bird, amphibian, reptile, mollusk,

crustacean, arthropod, or other invertebrate.” ANILCA specifically required the conserva-

tion of arthropod diversity on Alaska refuges, yet no Alaska refuge has conducted a thorough

inventory of arthropods, much less assessed their conservation statuses. In Alaska, records

for most arthropod taxa are incomplete (Danks et al., 1997) so that arthropods are less well

known than any other group of land animals (Alaska Department of Fish and Game, 2006).
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Box 1. Definitions of Diversity and Spatial Concepts
Whittaker et al. (2001) proposed a unifying nomenclature for diversity and
spatial scale concepts, which I will mostly follow. Species richness: the
number of species present at a given place or region. Species density:
species richness standardized in some way, such as by area or sampling
method. Evenness: a measure of how uniformly abundance is distributed
among taxa. Dominance: the extent to which an assemblage is represented
mostly by individuals of a few taxa (the inverse of evenness). Concepts of
richness, density, evenness, and dominance can also apply to taxonomic res-
olutions other than species, such as genus or family richness. Diversity:
difficult to define (Magurran, 1988), referring to either richness, evenness,
or a composite measure of both of these concepts. In this paper, diversity
will be used as an inclusive term including both richness (or density) and
evenness.
Spatial scale: the size of the sampling unit. Geographic extent: the area
of inference or its size.

Relevant Patterns of Diversity

Relationships of Diversity with Latitude and Elevation: The Importance of Climate

Latitudinal Gradients One of the most well-known patterns of the diversity of life is the

general trend of decreasing diversity progressing from the tropics toward either of the poles,

which has been known since the 19th century (Wallace, 1878). Most groups of plants and

animals follow this pattern, both in the present and in the fossil record (Rosenzweig, 1995).

Hillebrand (2004), in a meta-analysis of nearly 600 diversity studies, confirmed the gen-

erality of this trend. Among terrestrial arthropods, litter mites (Stanton, 1979), dragon-

flies (Tillyard, 1917; Kennedy, 1928), termites (Collins, 1989), some wood-boring beetles

(Beaver, 1979) butterflies (Hovanitz, 1958; Slansky, 1973; Scriber, 1973, 1984), Sphingid

moths (Schreiber, 1978), moths (Ricklefs and O’Rourke, 1975), ants (Kusnezov, 1957), and

arthropod communities (Teraguchi et al., 1981) are most diverse in the tropics with diversity

decreasing toward the poles. Within Alaska, the diversity of soil-dwelling mites decreases

with increasing latitude (Thomas and MacLean, 1988). Braconid wasps (Quicke and Kruft,

1995), ichneumonid wasps (Sime and Brower, 1998), and bees (Michener, 1979), however,

have peaks of diversity some distance from the tropics. Sawflies (Kouki et al., 1994), aphids

(Dixon et al., 1987), and springtails (Rapoport, 1975) even display a reversal of the general

trend, with highest diversities at relatively high latitudes.
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Though many hypotheses have been proposed to explain the latitudinal diversity gradient

(see Pianka, 1966; MacArthur, 1972; Rosenzweig, 1995; Mittelbach et al., 2007, for reviews),

there is little agreement as to its causes (Rosenzweig, 1995; Lawton, 1999). Many of the

hypotheses explaining the latitudinal diversity gradient depend on climatic trends. For

example, Stevens (1989) believed that Rapoport’s rule (the observation that the latitudinal

extents of species’ ranges are positively related to latitude) could be explained by the climatic

tolerances of species. In the tropics, where microclimate of a site may vary little, a species

with narrow climatic tolerances may persist. These narrow tolerances restrict it to occupying

only a small range in which those particular climatic conditions are realized. A high latitude

species, however, must be able to endure a large range of temperatures over the course of a

year, so it must be able to survive under a broad range of temperatures. This wide tolerance

predisposes it to being able to survive over a large geographic range. Stevens discussed

multiple reasons why the latitudinal diversity gradient might be related to Rapoport’s rule.

In some of the other hypotheses explaining the latitudinal diversity gradient, differences in

rates of speciation are often based on temperatures and lengths of growing seasons. The

evolutionary and time hypotheses propounded by Mittelbach et al. (2007) rely on these kinds

of underlying climatic gradients. For example, the length of time over which speciation has

occurred is often defined by time since severe climatic events, especially glaciations. It

is clear that climate characteristics are some of the most important determinants of the

latitudinal diversity gradient (Whittaker et al., 2001; Grytnes and McCain, 2007).

Elevational Gradients Biodiversity generally decreases with elevation or peaks at mid-

dle elevations (Rahbek, 1995, 2005; Grytnes and McCain, 2007). Arthropod diversity also

tends to be highest at low (Wolda, 1987; Fernandes and Price, 1988; McCoy, 1990; Kearns,

1992; Stevens, 1992; Olson, 1994; Sparrow et al., 1994) or intermediate elevations (Janzen,

1973; McCoy, 1990; Olson, 1994; Sanchez-Rodriguez and Baz, 1995; Fleishman et al., 1988;

Sanders, 2002; Mac Nally et al., 2003). A few arthropod groups, such as tropical psocids

and bees (Turner and Broadhead, 1974; Gauld, 1987), are most diverse at high elevations.

As with the latitudinal diversity gradient, multiple hypotheses have been proposed to ex-

plain observed elevation patterns (see McCoy, 1990; Lomolino, 2001; Rahbek, 1995; Grytnes

and McCain, 2007, for reviews). Stevens (1992) and Lomolino (2001) noted that many of the
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same hypothesized climatic determinants that result in the latitudinal diversity gradient are

reproduced in miniature in mountain systems, so some of the same drivers may be causing

both patterns. Price et al. (1998), in a study of global diversity patterns of gall-making

insects, even considered the climatic influences of latitude and climate to be interchangeable

by the equation, 4° latitude = 305m elevation. Lomolino (2001) predicted that, if climate

causes the observed elevational patterns of diversity, then the elevational peaks of diversity

should shift down slope with increasing distance from the equator. McCain (2007) proposed

a model for species diversity of bats that predicted variation in the elevation of maximum

diversity based on general gradients of temperature and water availability on mountains

(Figure 1.1). Temperature generally decreases with elevation (Barry, 1992). Precipitation

is generally highest at middle to upper elevations (Grytnes and McCain, 2007), but McCain

(2007) noted that much of the precipitation received by the highest elevations falls as snow,

which is less biologically available. Her model predicted a mid-elevation peak of diversity

where lower elevations are arid and a monotonically decreasing diversity pattern from low

to high elevations where lower elevations receive plentiful rainfall. If her model were to be

applied over the latitudinal climatic gradient while precipitation was held constant, peak

diversity would be expected to move down slope with increasing latitude as was predicted

by Lomolino (2001) since temperatures generally decrease with latitude. Consistent with

these predictions, McCoy (1990), in a meta-analysis of patterns of insect diversity along el-

evational gradients, found that the elevation of maximum diversity decreased with latitude,

with the elevation of highest diversity dropping to near sea level at 60° latitude.

McCain (2007) did not explain why bat species diversity was positively related to tem-

peratures and water availability except to note that bats require a minimum temperature

for activity. Grytnes and McCain (2007) gave two biological explanations for this trend.

The first was that the requirements of many taxa such as intolerance to climatic severity or

a need for high moisture preclude the existence of many species in the extreme cold of the

highest elevations and in arid lower elevations. Although they did not cite Wright (1983),

the second reason given by Grytnes and McCain (2007) was an application of Wright’s

species-energy theory (described below). Since productivity is generally highest at low to

middle elevations where the climate is both warm and wet, species richness should be highest

in these same areas based on Wright’s hypothesis.
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Figure 1.1: Generalized climatic model for elevational gradients in species richness of bats
from McCain (2007). Bat species richness is depicted in grey tones with darker tones
indicating more species. The placements of generalized tropical and temperate elevational
gradients analyzed in McCain’s study are shown below the x-axis.

Relationships of Diversity with Productivity

The most common relationship between biodiversity and productivity is unimodal, with

maximum diversity at an intermediate level of productivity, but a monotonically increasing

relationship is also common (Rosenzweig, 1995; Mittelbach et al., 2001). Diversity of ter-

restrial arthropods often increases monotonically with productivity (Brown and Davidson,

1977; Morton and Davidson, 1988; Seimann, 1998; Srivastava and Lawton, 1998; Kaspari

et al., 2000; Bailey et al., 2004). Mittelbach et al. (2001), in a meta-analysis of studies of

diversity, including 11 focused on terrestrial arthropods, found that unimodal relationships

were the most common.

The species-energy theory of Wright (1983) explains well the relationship of increasing

diversity with productivity in poor environments. It posits that when productivity is low,

population sizes cannot be large, so extinction rates are high, resulting in the observed pat-

tern. An explanation for why diversity often decreases after productivity exceeds a certain

point is more contentious. Although Rosenzweig (1995) listed reservations about all of the

nine hypotheses he reviewed explaining this unimodal pattern, he seemed to favor most the
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hypothesis of Tilman (1982) that decreasing environmental heterogeneity at the high end of

the productivity spectrum reduces the number of niche types, thereby reducing the number

of species that can make use of them. The assumption of this hypothesis is that hetero-

geneity is highest somewhere in the middle of the productivity spectrum. This may be true

when only a few species benefit from high productivity. Many species may not be able to

take advantage of increased productivity, so they would not be able to respond to hetero-

geneity in productivity at the high end of the productivity spectrum. For example, Grime

(1973a,b) found that at high productivities, a few highly competitive species of herbaceous

plants reduced richness by excluding other species. As another example, fires may cause

a unimodal pattern in vascular plant diversity in forests of the western Kenai Peninsula.

Some of the most productive areas in this region are areas where young hardwoods (Be-

tula papyrifera var. kenaica and Populus tremuloides) have established after fires. These

hardwoods grow quickly and thickly in burns, out-competing most other plants, producing

a habitat that is nearly a monoculture with little heterogeneity. Vascular plant diversity

increases and productivity decreases as spruce trees (Picea spp.) succeed hardwoods and

the forest becomes more heterogeneous. The species-area relationship of increasing diversity

with area, which has more support than any other diversity pattern (Rosenzweig, 1995), is

another proposed mechanism for the unimodal productivity relationship. Since the regions

of highest productivity are usually smaller than less productive regions, diversity may be

low in these high productivity regions simply due to the species-area relationship. It is also

important to note that if productivity is measured as some biological attribute, such as dry

weight of plants per hectare, evapotranspiration rate, or the density of chlorophyll, then the

measured productivity is itself a product of characteristics of the environment.

Congruence of Diversity Patterns of Arthropods and Plants

The diversity of plants is a good predictor of insect species richness in natural systems

(Gaston, 1992). In natural systems, herbivore diversity is generally correlated with plant

diversity (Seimann, 1998). Many insects, especially herbivores, are tightly associated with

particular plant species. For these specialized insects, existence depends on the presence of

their host plants. An alternative explanation for a positive correlation between plant and

insect diversity is that more plant species provide greater structural diversity and niches for
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a greater number of insect species. Discerning between these two hypotheses can be difficult

(Murdoch et al., 1972). In addition, the same environmental attributes that render some

places hospitable and others harsh may act similarly on plants and insects, even among

generalists that do not require particular plant species or structural characteristics. The

Aphididae are an exception in which species diversity is inversely related to plant species

diversity (see Dixon, 1985, for an explanation).

Practical Considerations in Measurement of Arthropod Diversity

Taxonomic Resolution

Danks (1996) strongly advocated insect identifications at the species level for two reasons:

species are the functional entities in ecology, and biological information is associated with

species names. When studying biodiversity, species level resolution or the even finer molec-

ular resolution reveals the most information about a system (Lenat and Resh, 2001). Iden-

tifications at coarser taxonomic ranks such as genus, family, or order yield progressively

less information. Nonetheless, since related species tend to have similar characteristics and

requirements, broader taxa tend to show similar patterns of distribution and abundance

as the species that compose them so that species-level information and coarser taxonomic

information may be largely redundant (Bowman and Bailey, 1997; Pik et al., 1999; Waite

et al., 2004; Marshall et al., 2006). Improving taxonomic resolution may not improve the

resolution of the results (Oliver and Beattie, 1996).

Species identifications for terrestrial arthropod groups require a high level of expertise

and are labor intensive, time consuming, and expensive (Danks, 1996). In some cases,

specific determinations are not possible in the short term either because expertise is not

available or because the taxonomy is yet to be resolved. Sorting to coarser taxonomic ranks

does not require as much taxonomic knowledge and is faster and cheaper than identifications

to species (Balmford et al., 1996). In addition, fewer misidentifications tend to be made at

coarser taxonomic resolutions, particularly by workers with less than the highest level of

expertise (Marshall et al., 2006). Because of the cost differences and the redundancy of

information gained at nested taxonomic levels, the optimal taxonomic resolution for a study

may be broader than the species level (Oliver and Beattie, 1996; Paoletti and Bressan, 1996;
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Bailey et al., 2001). The appropriate resolution depends on the objectives and budget of an

investigation.

In a lotic system, Marshall et al. (2006) found that the most efficient taxonomic resolution

for detecting differences among communities was the family level. In their study, the cost of

species identifications was over six times higher than family level identifications, but using

family data resulted in only a 6% loss in information compared with species identifications

in terms of detecting differences between sites (Figure 1.2). In a terrestrial system, genus

resolution was found to be optimal for distinquishing between sites and predicting species

richness of beetles and moths (Mandelik et al., 2007). A consensus among several studies

on arthropods and plants (Balmford et al., 1996; Bowman and Bailey, 1997; Marshall et al.,

2006; Mandelik et al., 2007) is that the family or genus resolutions are optimal in terms

of efficiency. Due to the especially high effort, cost, and time required for identification of

terrestrial arthropods, it may be appropriate to focus identifications at the family level.
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Figure 1.2: Information retained vs. cost of obtaining taxonomic data. The arrow represents
the optimum cost/benefit relationship. Figure from Marshall et al. (2006).

Taxonomic Breadth

For biodiversity studies, Kremen et al. (1993) recommended sampling several higher taxa

of arthropods using standardized methods. The criteria they gave for choosing groups were

that several distantly related groups should be sampled and each group should be diverse

with high endemism in the sampled area. An argument for including a wide taxonomic

scope is that different groups of arthropods in the same area may exhibit quite different

patterns of diversity (e.g., Prendergast et al., 1993; Wettstein and Schmid, 1999). Danks

(1996) acknowledged that the selection of taxa for inclusion in a biodiversity study is usu-

ally a compromise between feasibility and the objectives of the study. He also cautioned

against studying only the most easily identified groups, since these may provide little useful

information toward the objective.
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Within a fixed budget, a choice between wide taxonomic breadth and fine taxonomic

resolution may be necessitated. Since different groups often exhibit distinct patterns of

diversity and because conclusions at differing taxonomic levels are generally concordant,

sacrificing taxonomic resolution is probably more optimal than narrowing taxonomic scope

in diversity studies that are intended to be generalizable (Heino et al., 2003).

Objectives and Hypotheses

To contribute to the understanding of arthropod diversity and provide information relevant

to monitoring and conservation, I examined patterns of terrestrial arthropod diversity on

the Kenai National Wildlife Refuge (KENWR). The primary goals of this project were

to document patterns of terrestrial arthropod diversity in a boreal forest/tundra system

and explain the causes of the observed patterns. Specifically, I attempted to elucidate the

relationships of arthropod family diversity with elevation, local climate, productivity, and

vascular plant species density.

Objective 1: Document patterns of terrestrial arthropod diversity.

I summarized observed patterns of arthropod family density and produced a map of pre-

dicted arthropod family density over the KENWR. These data alone will be useful to the

KENWR for inventory and management purposes.

Objective 2: Explain the causes of the observed pattern of diversity.

Hypothesis 1: I hypothesized that, at the high latitude of the KENWR, cold temperatures

limit the number of arthropod families. I predicted that, as a result, indices of arthropod

diversity are directly related to temperature.

Hypothesis 2: I hypothesized that, over the relatively dry landscape of the KENWR, low

water availability excludes some arthropod taxa from drier sites. I predicted that diversity

indices are positively related to precipitation.

Hypothesis 3: Because of increasing climatic severity (temperature, wind, and extreme vari-

ation) with elevation, I hypothesized that fewer arthropods can persist at higher elevations
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than at the milder climates of lower elevations. I predicted that arthropod diversity indices

decrease with elevation monotonically.

Hypothesis 4: I hypothesized that generally low productivity on the landscape of the

KENWR limits arthropod density and diversity. While productivity is negatively corre-

lated with elevation on the KENWR, it varies widely within elevational bands due to local

differences in soils, hydrology, and disturbance history; therefore it may explain differences

in arthropod diversity not attributable to elevational gradients. I predicted that arthropod

diversity indices monotonically increase with a remotely-sensed vegetation index of produc-

tivity.

Hypothesis 5: Particularly among herbivorous arthropods, geographic distributions are lim-

ited by the availability of their host plants. As a result, I predicted that arthropod diversity

indices are positively related to the species density of vascular plants.

1.2 Methods

Overview

Most data used in this analysis are from the KENWR’s Long-Term Ecological Monitor-

ing Program (LTEMP), a grid-based multi-taxa inventory and monitoring effort on the

KENWR. Specimens from all points were sorted to families, arthropod family diversity

indices for each grid point were calculated, and hypothesized relationships of arthropod di-

versity to elevation, productivity, habitat structure, and plant diversity were tested using

regressions. The spatial scale of this study was a 100 m2 plot. The area of inference and

geographic extent was the 800,000 ha KENWR excluding water bodies, glaciers, beaches,

coastal bluffs, saline mud flats, and areas of human development. This study was limited to

an analysis of alpha diversity at the family level of resolution.

Study Area

General Description

The 800,000 ha KENWR covers much of the western Kenai Peninsula in south-central Alaska

(Figure 1.3). The KENWR is a vast, diverse landscape of boreal forest, alpine tundra,
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and coastal marsh biomes. The western portion of the refuge is mostly lowland white

spruce (Picea glauca), black spruce (Picea mariana), paper birch (Betula papyrifera var.

kenaica), and quaking aspen (Populus tremuloides) forest; black spruce muskeg; graminoid

and bryophyte-dominated wetlands; and lakes (Figure 1.4). Frequent fires on the lowlands

have left a patchy mosaic of varying stand ages. The Kenai Mountains extend on a north-

south line along the eastern portion of the refuge. This region comprises intervening forested

valleys of spruce and western hemlock (Tsuga mertensiana); alpine tundra; barren, rocky

mountain peaks; snowfields; and glaciers. Chickaloon Flats on the northern coast is the only

tidal marsh on the refuge.
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Figure 1.3: Map of the Kenai National Wildlife Refuge.
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Figure 1.4: Kenai Peninsula land cover classification (O’Brien, 2006).

Climate

The KENWR, ranging from 59.4–61° north latitude and 149.7–151.2° west longitude, is

large enough to exhibit distinct gradients of climate over the landscape. The vast lowlands

of the northwestern portion of the refuge approach the high-latitude continental climate

of Interior Alaska. Mountain ranges to the west, north, and south leave this region in a
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rain shadow of low precipitation. Its high continentality also means that winter minimum

temperatures are colder and maximum summer temperatures are hotter in this region than

in other low elevation portions of the refuge. From here southward along the lowlands,

precipitation increases and temperatures ameliorate until a maritime climate is reached at

the extreme south of KENWR. In the Kenai Mountains running down the eastern side of the

refuge, temperatures decrease and precipitation increases with elevation. North-south and

west-east gradients of decreasing continentality also exist within the mountains, although

the west-to-east gradient within the mountains is not clearly discernible within the narrow

band of mountains on the refuge, becoming more clearly evident when the rest of the Kenai

Mountains in the Chugach National Forest and Kenai Fjords National Park are included.

Introduction to LTEMP

LTEMP was designed to be a multi-taxa inventory and monitoring program for breeding

birds, vascular plants, non-vascular plants, and terrestrial arthropods over the KENWR. A

grid sampling design covering the entire refuge provided good spatial coverage and ensured

that the sample was representative of the refuge as a whole. A quick, swat team-like approach

to sampling was employed, sampling all taxa in less than one hour on each plot so that five to

six plots could be visited per team per day. Collaboration with the USDA Forest Inventory

and Analysis (FIA) program, which was already sampling vegetation characteristics across

the KENWR, resulted in greater efficiency because redundant vegetation sampling was

not necessary. The three goals of LTEMP were to (1) inventory current diversity using

generalized sampling methods, (2) set the stage for statistical modelling of various attributes

by sampling multiple metrics at the same points, and (3) initiate long-term monitoring of

multiple taxa.

Sampling Design

FIA sampling in Alaska was performed by the USDA’s Pacific Northwest Research Station

(PNRS). A regular grid of points at 4.8km intervals was imposed over the south central

Alaska region, 327 of which fell on the KENWR. Based on aerial photography and satellite

imagery, all points that fell on land were classified as forested or non-forested.
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Vegetation Sampling

FIA Vegetation Sampling Between 1999 and 2002, The Forest Service sampled vegetation

using FIA protocols on the 176 points on the KENWR which had been determined to be

forested. At each sampling site, a circular, 5.4m radius (100m2) horizontal-vertical (HV) plot

was established, where horizontal and vertical distributions of vegetation layers and their

species composition were described. The observer divided the vegetation strata by natural

breaks and recorded the density of each species present in each layer by ocular estimation

of percent cover. All vegetation except for trees of over 2.5cm DBH (diameter at breast

height) was included. See USDA Forest Service (2000-2003) for complete FIA protocols.

LTEMP Vegetation Sampling In 2004 and 2006, vegetation was sampled on the remain-

ing 80 non-forested points on the KENWR by refuge staff using the LTEMP vegetation

protocols. In order to complete a consistent vegetation presence/absence dataset across all

LTEMP points, all species within a 5.4m radius plot centered on the LTEMP point were

recorded.

After collapsing the FIA’s 3-dimensional HV data into a simple list of species present

within the 5.64m radius circular plot, the vegetative inventory information from both vege-

tation sampling methods was combined.

Plot Weather Data

Temperature (°C), relative humidity(%), wind speed (m/s), and time of day were measured

on the plots immediately before athropod sweep net samples were taken. Data were collected

using a Kestrel 3000 Pocket Weather™ meter and averaged over 30 seconds. The weather

was also scored categorically using the codes and sky conditions descriptions in Table 1.1.

The code numbers correspond to generally decreasingly favorable conditions for collection

of sweep net samples from clear conditions to snow and rain showers.
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Table 1.1: Sky condition codes and definitions.

Code Conditions
0 Clear or a few clouds
1 Partly cloudy (scattered) or variable sky
2 Cloudy (broken) or overcast
4 Fog or smoke
5 Drizzle
7 Snow
8 Showers

Arthropod Sampling

Terrestrial arthropods were sampled in 2004 and 2006 at all points where vegetation data

were collected (n = 255). All points were accessed by helicopter. KENWR staff sampled

half of the grid in 2004 by visiting every other point (n2004 = 152); the second half of

the points (n2006 = 103) were sampled in 2006 (Figure 1.5). Concurrent sampling of birds

determined the seasonal (June 7–30) and daily (04:40 to 10:54 hours) sampling windows. In

both years, terrestrial arthropods were sampled over the last three weeks in June. Points

that fell on water, mud flats, or ice were not visited. Some points that were too far away

from landing sites (> 1km) or inaccessible due to steepness of terrain were also dropped.
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Figure 1.5: LTEMP sampling points. Blue points were sampled in 2004 and red points were
sampled in 2006.

Arthropod Sampling Methods

Sweep netting was chosen as the sampling method for terrestrial arthropods because it

performed well compared to other methods for broadly sampling the insect community,

could be executed quickly, and caused little damage to the plots. A single sweep net sample

was taken at each plot. For each sample, the collector swept a 30.5cm diameter aerial insect
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net quickly back and forth over all vegetation and other substrates within reach over the

entire 100m2 circular plot within five minutes. The sample was then emptied into a vial

of 80–90% ethanol. Care was taken to minimize damage to the arthropods and to prevent

their escape during transfer from the net to the vial.

Taxonomic Resolution and Breadth

This study was restricted to examination of arthropod diversity at the family resolution.

Taxonomic breadth was as broad as possible, although some groups were excluded due to

practical constraints. Mites, spiders, Trichoptera, Microlepidoptera, and most Nematocera

were excluded due to the inordinate time required to identify them. All Psocoptera were

immature at the time of sampling, so they could not be identified. Lepidoptera and minute

Nematocera were excluded because they tended to be badly damaged by the selected collect-

ing methods. Terrestrial Gastropoda, the only other animals collected, were ignored. My

analyses included 90 families (Table 1.2) and, except where specified, all further discussion

will be limited to this set of families.

Sorting and Identification

All arthropod specimens were processed and archived using appropriate curation methods.

All arthropods present in the samples were sorted into orders and most were sorted to

families. Borror et al. (1989); Borror and White (1970); White (1983); McAlpine et al. (1981,

1987); Goulet and Huber (1993) were the main keys used for family level identifications.

With the exception of small amounts of material lent to various systematists, all specimens

remain in the arthropod collection of the KENWR (international collection coden: KNWR).

GIS-derived Data

Elevation Data

Elevation data were extracted from a digital elevation model (DEM) of the Kenai Peninsula

(O’Brien, 2006). This was done by resampling USGS DEM data from 30m × 60m to 30m

× 30m resolution.
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Table 1.2: Arthropod families included in analyses.

Arachnida Hemerobiidae Otitidae
Opiliones Coleoptera Phoridae
Sclerosomatidae Anobiidae Pipunculidae

Chilopoda Cantharidae Psilidae
Lithobiomorpha Carabidae Rhagionidae
Lithobiidae Chrysomelidae Scathophagidae

Parainsecta Coccinellidae Sciomyzidae
Collembola Curculionidae Sepsidae
Entomobryidae Elateridae Simuliidae
Hypogastruridae Lathridiidae Sphaeroceridae
Isotomidae Leiodidae Stratiomyidae
Sminthuridae Lycidae Syrphidae

Insecta Pythidae Tabanidae
Odonata Scarabaeidae Tachinidae
Coenagrionidae Scirtidae Tephritidae

Orthoptera Staphylinidae Hymenoptera
Acrididae Diptera Aphelinidae

Hemiptera Agromyzidae Apidae
Acanthosomatidae Anisopodidae Argidae
Achilidae Anthomyiidae Bethylidae
Anthocoridae Anthomyzidae Braconidae
Aphididae Asteiidae Ceraphronidae
Cicadellidae Bibionidae Diapriidae
Delphacidae Chamaemyiidae Dryinidae
Lygaeidae Chloropidae Encyrtidae
Miridae Clusiidae Eulophidae
Nabidae Culicidae Eurytomidae
Psyllidae Dolichopodidae Formicidae

Thysanoptera Drosophilidae Ichneumonidae
Phlaeothripidae Dryomyzidae Platygasteridae
Thripidae Empididae Pteromalidae

Plecoptera Ephydridae Scelionidae
Chloroperlidae Heleomyzidae Tenthredinidae

Neuroptera Lauxaniidae Torymidae
Chrysopidae Micropezidae
Coniopterygidae Muscidae
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Productivity Data

The Normalized Difference Vegetation Index (NDVI) is a widely used, remotely sensed esti-

mator of primary productivity in terrestrial systems. The NDVI makes use of the difference

between the high absorbance of chlorophyll in the red portion of the electromagnetic spec-

trum and its low absorbance in the near-infrared band to measure the density of visible

chlorophyll in an area. NDVI data are positively correlated with primary productivity (Box

et al., 1989; Lo Seen Chong et al., 1993; Ricotta and Avena, 1998), the density of active pho-

tosynthetic pigments in vegetation (Myneni et al., 1995), actual evapotranspiration (AET)

(Box et al., 1989; Lo Seen Chong et al., 1993), and leaf area index (LAI) (Soudani et al.,

2006). I calculated NDVI (Figure 1.6) from a mosaic of LandSat 7 imagery covering the Ke-

nai Peninsula (O’Brien, 2006). The original imagery was a set of LandSat 7 images taken in

2002 available from the Multi-Resolution Land Characteristics Consortium, which covered

the area of interest at 30m resolution.
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Figure 1.6: NDVI raster generated from LandSat 7 imagery.
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Climate data

Precipitation and temperature data were extracted from the PRISM (Parameter-elevation

Regressions on Independent Slopes Model) raster datasets produced by the Spatial Climate

Analysis Service at Oregon State University (SCAS/OSU). This dataset is currently the

best climate coverage available for Alaska (Simpson et al., 2005). The model incorporated

climatological point data for the time period of 1961-1990 and a digital elevation model

(DEM) to interpolate monthly precipitation and temperatures over the state of Alaska at

2km resolution.

Rarefaction

In order to assess how the sweep net method sampled the arthropod fauna, a rarefaction

curve was generated using the specaccum function of the vegan package (Oksanen et al.,

2007).

Prediction by Random Forest Regression

In order to create a continuous raster of arthropod family density over the KENWR, pre-

dictions were made by Random Forest Regression, a machine learning algorithm with high

predictive accuracy (Breiman, 2001).

A 100m × 100m resolution prediction grid was imposed over the KENWR. Values of

covariates that were available as raster datasets were extracted by resampling (bilinear inter-

polation) using ArcMap (Table 1.3). Covariates available as vector datasets were converted

to raster datasets conforming to the prediction grid. For all covariates, values from pixels

in which LTEMP sampling locations fell were extracted for use in fitting of random forest

regression models. For prediction, the time was set at median observed values from observed

LTEMP data (June 18 at 8:00 am).

Random forest regressions were fitted using the radomForest function of the randomForest

package (Liaw and Wiener, 2002). For all random forest regressions, 5,000 trees were built.

To select an optimal value of the ‘mtry’ parameter, the number of predictors randomly se-

lected for consideration at each node, I ran random forest regressions for all values of mtry

between 1 and 50 and selected the value of mtry that yielded the highest value of pseudo-

R-squared and the lowest mean squared error. A random forest regression model was then
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Table 1.3: Covariates included in random forest regressions.

Coefficient No. Description
Spatial
latitude 1
longitude 1
Topographic
elevation 1 Elevation from the Digital Elevation Model (DEM). See

page 20.
slope 1 Derived from DEM.
aspect 1 Derived from DEM.
curvature 1 Derived from DEM.
distance_ocean 1 Distance to the ocean.
Climate
precipitation 13 monthly and annual precipitation from the PRISM

model. See page 24.
temperature 13 average monthly and annual temperature from the

PRISM model. See page 24.
accumulation 1 Amount of accumulated surface runoff based on PRISM

annual precipitation data and DEM.
Vegetation
NDVI 1 See page 22.
landcover 1 Vegetation cover classes from O’Brien (2006).
Temporal
day 1 Julian day.
hour 1 hours since midnight.
Historic
years_post_fire 1 Years since last fire.
Total 39

fitted using this optimal value of the mtry parameter. I used this model to make predictions

at all 100m × 100m pixels over the KENWR.

Diversity Indices

Selection and Calculation of Diversity Indices Because richness and dominance/evenness

are quite different qualities of diversity, three diversity indices were calculated to represent

the spectrum from richness-only to dominance/evenness-only measures of diversity. Family

density (Si) was simply the number of families collected at plot i, an index of only richness

information. Shannon’s Information Index (H ′i), a compsite index reflecting richness and
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evenness (but more richness than evenness) was calculated as in Magurran (1988) using

equation 1.1

H ′i = −
∑
j=1

qij ln(qij) (1.1)

where qij is the proportion of individuals from the jth family (estimated by mij/Ni,

where mij is the number of individuals of family j collected at plot i and Ni is the total

number of specimens collected at plot i). The inverse of the Berger-Parker index, hereafter

referred to as the Berger-Parker index (d), measures evenness and was calculated as in

Magurran (1988) using equation 1.2

di = Ni/mimax (1.2)

where Ni is the total number of families collected at plot i and mimax is the number of

individuals collected from the most abundant family at plot i. The inverse of the Berger-

Parker index was used so that it would increase with increaseing evenness, consistent with

other diversity indices. It is a dominance-only index containing no information about rich-

ness. From among the list of diversity indices that have been devised, family richness and

the Berger-Parker index were chosen because they are easily interpreted measures of distinct

aspects of diversity. Of the composite indices, which are more difficult to interpret, Shan-

non’s Information Index was selected because it performs better than most other composite

indices in terms of distinguishing differences between plots (Taylor, 1978; Kempton, 1979)

and because of mathematical issues encountered for some other diversity indices at the often

small sample sizes observed within individual plots.

Influences of Sample Size and Detection Probabilities When comparing diversity indices,

it is important to be aware of some of their properties. Both S and H ′ are influenced by the

number of specimens collected (Magurran, 1988). The number of specimens collected at a

site (Ni observed) is directly related to detection probabilites by the equation

Ni observed =
n∑
i=1

Nijpij (1.3)
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where Nij is the true number of individuals of family j present at site i and pij is

probability of detecting family j at site i. Note that there is no way to obtain good estimates

of Nij without more information (i.e., some way of estimating the pij ’s). In a similar way,

observed values of S are directly related to detection probabilities by the equation

S̄i =
n∑
i=1

Pijpij (1.4)

where S̄i is the expected value of observed richness at site i, Pij is the probability that

family j is present at site i, and pij is the probability of detection of family j at site i

given that it is present. Note that the term pij had two different definitions in equations

1.3 and 1.4. The point is that the regressions of S and H ′ reflect not just richness, but also

abundance and detection probabilities.

Calculability of Diversity Indices Another point which must be taken into account is that

H ′ and d could not be calculated at all points. d cannot be calculated when S = 0 and H ′

cannot be calculated when S = 0 or 1. As a result, H ′ and d do not apply to the sites with

lowest diversity. In contrast, S can be calculated everywhere, so regressions of S contain

information both about family richness and the distribution of arthropods (at least whether

or not athropods are detected).

Analyses of Spatial Autocorrelation

I assessed spatial autocorrelation of diversity indices by visual inspection of empirical vari-

ograms generated with the variog function in the geoR package (Ribeiro and Diggle, 2001).

Inverse-distance-weighted Moran’s I tests using the moran.test function in the spdep pack-

age (Bivand et al., 2007) were performed to test for spatial autocorrelation. In assigning

weights for the Moran’s I tests, the maximum distance for comparison of points was set

at 50km because greater distances were much more computationally intensive and did not

substantially alter results.

Regression Analyses of Diversity Indices

Two of the 255 plots sampled were excluded from regression analyses, leaving 253 plots for

the analyses. In one case, plot vegetation data had been misaligned with all other data due
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to logistical errors. In another case, it appeared that an avalanche had cleared the plot after

NDVI and plot vegetation data were collected. The site had been lush and vegetatively

diverse when NDVI and vegetation data were observed. Later, when the sweep net sample

was taken, nearly all vegetation had been scoured away, leaving mostly bare earth. No other

sites appeared to have experienced such drastic changes between the times when various data

were collected.

All regression models were fitted with appropriate generalized linear models (GLMs).

Numerous examples exist of regressions of count data, including models of richness, but

it appears that regressions of other diversity indices are less common. Benin et al. (2003)

used Gaussian ordinarly least squares (OLS) regressions for modelling values of Shannon’s

Information Index (H ′) and the Berger-Parker index (d). I selected optimal model families

and link functions on the basis of the observed distributions of the diversity indices and by

comparing measures of goodness-of-fit of plausible model families as in Zeileis et al. (2007).

Family density (S) was modeled best by a negative binomial model fitted with the glm.nb

function of the MASS package (Venables and Ripley, 2002). OLS regression was determined

to be appropriate for Shannon’s Information Index (H ′), fitted with the lm function of

the R base package. Since H ′ could not be calculated when S was 0 or 1, these values

were excluded. As a result, only 226 records could be used in OLS regressions of H ′. The

(inverse of the) Berger-Parker index (d) was best modeled by gamma regression using an

inverse link and fitted with the glm funciton of R base. (I did also model the untransformed

Berger-Parker index with OLS regression as was done by Benin et al. (2003), which yielded

essentially identical results and slightly poorer model fit.) Since the Berger-Parker index

could not be calculated where no arthropods were collected, these records were omitted from

analysis, leaving 240 records. Benin et al. (2003) omitted undefined values of H ′ and d in

the same way.

Bayesian Model Averaging (BMA) was employed for model selection as well as for ob-

taining parameter estimates. Compared to other model selection methods based on AIC,

BMA is more conservative, generally selecting simpler models (Wintle et al., 2003). BMA

has the additional advantage of taking into account uncertainty due to model structure

when estimating parameter values and their variances (Wintle et al., 2003). I performed

BMA analyses using the bic.glm and bicreg functions of the BMA package (Raftery et al.,
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2006). A large number of variables associated with the arthropod sweep net samples as

well as selected interaction terms were included in BMA analyses (Table 1.4). I included

only interaction terms that seemed most relevant to the hypotheses and predictions under

consideration. The model most favored by the BMA analysis of each diversity index was

selected as the best model. For the negative binomial BMA of S, where the dispersion

parameter could not be fitted by the bic.glm function, a value for the dispersion parameter

was chosen interactively by first running the BMA analysis, then fitting the best model. The

dispersion parameter fitted by the best model was then used in another BMA analysis. In

this case, the second BMA analysis selected the same best model. For each of the diversity

indices, the best model selected by the BMA anlaysis was then fitted using GLM or OLS

regression.

Table 1.4: Terms included in BMA Analyses.

Coefficient Description
First-order terms
E Elevation from the Digital Elevation Model (DEM). See page

20.
Slope Slope in degrees. Derived from DEM.
Aspect Aspect. Derived from DEM. Aspects were converted from

degrees (yielded by GIS conversion from the DEM) to values
from -1 to 1 by the function

Aspect = − cos
(
Aspect(°)× π

180°

)
so that north-facing slopes were given a value of -1, east-
facing slopes and west-facing slopes were given values of 0,
south-facing slopes were given values of 1, and other aspects
were assigned intermediate values. Level areas were assigned
a value of 0.

Area Area of elevational bands over the Kenai NWR. Calculated
from DEM.

NDVI See page 22.
PA Total annual precipitation from the PRISM model. See page

24.
TA Average annual temperatures from the PRISM model.
TO Observed plot temperatures at the time sweep net samples

were taken. See page 17.
Humidity Observed relative humidity. See page 17.
Wind Observed wind speed. See page 17.
Sky Observed sky condition. See page 17.

continued on next page. . .
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Table 1.4 continued.

Coefficient Description
Day Julian day when sweep net samples were taken.
Hour The time of day at which sweep net samples were taken.
h(cover classes) Vegetation cover classes (O’Brien, 2006, Figure 1.4). The

cover classes in which the sweep net samples fell were the fol-
lowing: hemlock, alpine, snow, white spruce, mixed conifer,
paper birch, cottonwood, mixed deciduous, mixed forest,
alder, willow, alder-willow, herbaceous, graminoid wetland,
shrub wetland, halophytic wetland, stream, sparse and bar-
ren.

Sveg Vegetation species density within the 5.4m radius plot. See
page 17.

Climate interactions
E:TA, E:PA, E:TO, TA:PA, TA:TO, PA:TO

Productivity interactions
NDVI :TO, NDVI :TA, NDVI :PA, NDVI :E, NDVI :Sveg

Differences in seasonal phenology
E:day

Temporal changes in temperature
TO:Day, TO:Hour

Conventional R2 measures of goodness-of-fit are not appropriate for generalized linear

models such as negative binomial and gamma models (Cameron and Windmeijer, 1996), so

for these models a deviance measure (R2
dev) was calculated by the equation

R2∗
dev = 1− residual deviance

null deviance
(1.5)

In a similar way, ANOVA and Analysis of Deviance sums of squares for each coefficient

were expressed as a kind of standardized sum of squares in the same scale as R2 and R2
dev.

These were expressed as R2∗
a and R2∗

deva for OLS and GLM models, respectively, by the

equations

R2∗
a =

SSa
SSTotal

(1.6)

and

R2∗
deva =

deviancea
null deviance

(1.7)
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where SSa was the sum of squares of coefficient a, SSTotal was the total sum of squares,

and deviancea was the deviance explained by coefficient a.

Regressions of Observed Temperatures and NDVI

In order to better interpret relationships of diversity indices with observed plot temperatures

(TO) and NDVI (NDVI ), OLS regressions were performed and a best model was selected

using BMA. TO was regressed against E, TA, Day, and Hour; NDVI was regressed against

E, TA, PA, Slope, and Aspect. In both cases, all second-order interaction terms were also

included.

1.3 Results

Quantity of Material Collected

Numbers of Specimens The 255 sweep net samples yielded a total of 15,136 specimens,

of which 20 were terrestrial gastropods and the remaining 15,116 were arthropods. The

total number of specimens collected per sample (NT ) ranged from 0 to 462 with a median

value of 46 (Figure 1.7). The highest numbers of specimens per sample were collected in

coastal halophytic wetlands and at lowland forested sites, particularly sites with open forest

and a lush herbaceous understory. Progressively fewer specimens were collected with rising

elevation until often no specimens were collected at high elevation, rocky sites and high

tundra sites that had only recently become free of snow. No specimens were encountered

on snowfields. The 90 families selected for analysis comprised 9,961 specimens. Of these,

the number of specimens per sample (N) ranged from 0 to 309 with a median value of 27.
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Figure 1.7: Numbers of specimens collected per plot. NT is the total number of specimens
collected per plot and NA is the number of specimens per plot included in the analyses.

Taxa Collected

Orders Seventeen orders of arthropods were represented in the sweep net samples. Over

half of the total specimens collected (53%) were Diptera. Hemiptera (20%), Araneae (9.0%),

Collembola (7.0%), and Hymenoptera (4.5%) comprised substantial fractions of the to-

tal. Acarina (2.6%), Lepidoptera (1.1%), Coleoptera (0.94%), Thysanoptera (0.60%), Pso-

coptera(0.42%), Neuroptera (0.19%), Opiliones (0.15%), Orthoptera (0.086%), Trichoptera

(0.026%), Odonata(0.020%), Plecoptera (0.020%), and Lithobiomorpha (0.013%) were less

abundant in the samples.

Families The abundance and frequency of specimens from each family greatly varied (Ta-

ble B.1). Culicidae, with a total (mj) of 3,697 individuals collected and a frequency (fj) of

0.76 (i.e., collected at 76% of sites), was the most abundant and frequently collected family.

Aphididae, Sminthuridae, Cicadellidae, Muscidae, Delphacidae, Empididae, Ichneumonidae,

Simuliidae, Braconidae, Lauxaniidae, Phoridae, Biobionidae, Anthomyiidae, and Canthari-

dae were also relatively abundant and frequently collected. Ephydridae were abundant lo-

cally, one site on the margin of Chickaloon Flats yielding 133 of the 135 Ephydrid specimens

collected; but they were infrequent, collected at only three sites (fj = 0.012). In contrast,
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Diapriidae were relatively common (collected at 27 sites, fj = 0.11) but were usually repre-

sented by few individuals at each site (mj = 38, an average of 1.4 specimens per site where

they occurred). Many taxa were rarely encountered and were represented by few speci-

mens. For 17 families (Isotomidae, Chloroperlidae, Achilidae, Nabidae, Phlaeothripidae,

Anobiidae, Carabidae, Lathridiidae, Lycidae, Pythidae, Scarabaeidae, Scirtidae, Clusiidae,

Dryomyzidae, Sepsidae, Aphelinidae, and Bethylidae), only a single specimen was collected.

A rarefaction curve (Figure 1.8) of the family data shows a rapid rise in the number

of families represented with increases in the number of sampling sites up to around 30.

After about 40 samples, new families were added more slowly. Although most families were

represented by the first 100 samples, an asymptote had not been reached by 255 samples.
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Figure 1.8: Rarefaction curve of families collected The solid line is the predicted number of
families accumulated and the dashed line bound 95% confidence intervals.

Diversity

The three diversity indices ranged from family density (S) that accounts only for the num-

ber of taxa (richness) to the Berger-Parker index (d) that reflects only dominance. The
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Shannon’s Information Index (H ′) is intermediate, reflecting both richness and evenness,

but it is influenced by richness more than evenness (Magurran, 1988).

Family density (S) was generally low, varying from 0 to 20 with a median value of 7

(Figure 1.9). Values of the Shannon’s Information Index (H ′) calculated from family data

ranged from 0.10 to 2.6 with a median value of 1.5. High values of H ′ were observed from

sea level to 929m, always at plots with a substantial understory of green herbs, graminoids,

or shrubs. Low values were observed at barren and recently snow-covered alpine sites.

Dominance of a single family was often quite high. The Berger-Parker index (d) cal-

culated from family data ranged from 1.0 to 9.0 with a median value of 2.0. This means

that a single family frequently represented at least half of the total number of specimens in

a sample. As with Shannon’s Information Index, low dominance (high evenness and high

values of d) was observed from sea level to 929m at plots with a lush, green understory,

and high dominance (low evenness and low values of d) were found at barren and recently

snow-covered alpine sites.
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Figure 1.9: Histograms of diversity indices. family density (S), Shannon’s Information Index
(H ′), and the Berger-Parker index (d).

Sites with high richness also tended to have high evenness (low dominance). Both

the family density measure of richness and the Berger-Parker index measure of dominance

were positively correlated with the composite index, Shannon’s Information Index (R =

0.73 and R = 0.80, respectively). The Berger-Parker index was less strongly positively

correlated with family density (R = 0.42). Along the progression from richness-dominated

to dominance/evenness-dominated indices, correlation with the total number of specimens
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(NT ) decreased (Table 1.5). Family density was most strongly correlated with the number of

specimens (R = 0.64), and dominance was hardly correlated with the number of speicmens

(R = 0.07).

Table 1.5: Correlation matrix of diversity indices and plot sums. NT : total number of
specimens collected per sample. NA: number of specimens included in analyses. S: family
density. H ′: Shannon’s Information Index. d: Berger-Parker Index.

NA S H ′ d

NT 0.94 0.64 0.14 0.07
NA 0.59 0.04 -0.14
S 0.73 0.42
H ′ 0.80

Nearby points tended to have similar values of richness and dominance/evenness, with

similarity decreasing as the distance between points increased. All diversity indices showed

strong spatial autocorrelation (Table 1.6); however, only a small portion of the variance

was explained by spatial autocorrelation. About one third of the variance of the richness-

dominated indices family density and Shannon’s Information Index and about one fourth

of the variance of the Berger-Parker index were explained by spatial autocorrelation. The

distance at which spatial autocorrelation became negligible was about 60km for the Berger-

Parker index and about 120km for family density and Shannon’s Information Index (Figure

1.10).

Table 1.6: Spatial autocorrelation of diversity indices: results of inverse-distance-weighted
Moran’s I tests. S: family density. H ′: Shannon’s Information Index. d: Berger-Parker
index. Higher values of I indicate stronger spatial autocorrelation. p > 0 is the p-value of
the test, the probability of obtaining the observed value of I under an assumption of no
positive spatial autocorrelation.

Diversity Index Moran’s I p > 0
S 6.89 2.7× 10−12

H ′ 4.70 1.63× 10−5

d 3.18 2.00× 10−6
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Figure 1.10: Spatial autocorrelation of diversity indices: empirical semivariograms. S:
family density. H ′: Shannon’s Information Index. d: Berger-Parker index. Semivariance is
essentially a variance between observed values at pairs of points separated by some distance.

Random Forest Regression of Family Density

Random forest regressions incorporating only information that was available as continuous

raster data explained only 22% of the variation of family density, but produced a reasonable

map of predicted family density (Figures 1.11 and 1.12). The landcover classification of

O’Brien (2006) was the most important variable, followed by NDVI (Figure 1.13). This

raster predicted lowest arthropod family density at barren alpine sites. Highest densities

were predicted near coastal wetlands at the north of the KENWR and productive mixed

forests in the northwest of the KENWR.
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Legend
Arthropod Family Density
(Families per Sweep Net Sample)

High : 14.285

Low : 0
KENWR Boundary

Figure 1.11: Arthropod family density predicted by random forest regression.
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Legend
Standard Error
(Families per Sweep Net Sample)

High : 6.33141

Low : 0
KENWR Boundary

Figure 1.12: Standard error of arthropod family density predicted by random forest regres-
sion.
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Figure 1.13: Importance of variables included in final random forest regression model. Vari-
able names were defined in Table 1.3. IncNodePurity is the mean decrease in node purity,
also known as the Gini splitting criterion (Breiman, 2002).

Arthropod family density was predicted to be highest (mean families/sweep net sam-

ple = 9.09) in the halophytic wetland habitat type (Table 1.7), followed by forest types

with substantial proportions of hardwoods (except aspen) and shrubby wetlands. Diversity

was predicted to be lowest at alpine, sparsely vegetated, and barren/rock habitat types

(mean families/sweep net sample = 3.33–4.76). Note that no LTEMP points fell within the

urban/cultural or aspen habitat types.
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Table 1.7: Predicted arthropod family density by landcover type.

Landcover Type Predicted Density
(Families/Sweep Net Sample)
Mean S.D.

Wetland - halophytic 9.03 0.90
Black cottonwood (balsam poplar) 8.88 1.17
Mixed forest 8.31 1.19
Paper birch 8.24 1.13
Wetland - shrub 8.15 1.44
Alder/Willow 8.05 1.54
Mixed deciduous 8.01 1.23
White/Lutz/Sitka spruce 7.99 1.33
Black spruce 7.79 1.09
Wetland - graminoid 7.76 1.24
Herbaceous 7.68 1.30
Urban/Cultural 7.54 1.34
Aspen 7.51 1.00
Willow 7.43 1.86
Mixed conifer 6.57 1.38
Alder 6.26 1.41
Other shrub 6.18 1.84
Mountain hemlock 6.06 1.16
Barren - wet 5.70 2.40
Alpine 4.76 1.26
Sparsely vegetated 3.69 1.48
Barren/Rock 3.33 0.85

Regression Analyses of Family Density

Bayesian Model Averaging Family density was positively related to Sveg, Day, PA*TO, and

PA*NDVI and negatively related to PA, hAlpine, and hHemlock (Table A.1). Coefficients for

these variables were included in at least 95.4% of models selected; and Sveg, Day, hAlpine,

and hHemlock were always included in selected models, indicating a high degree of certainty

that family density was related to them. The coefficients of variation of these BMA estimates

were fairly high, ranging from 0.16 for TO:PA to 0.37 for NDVI :PA. A positive coefficient

for the habitat type hHalophytic Wetland was also frequently included in models (49.7%).

Model Selection The five best models were consistent in including the terms Sveg, PA*TO,

PA*NDVI, PA, Day, hAlpine and hHemlock (Table 1.8). The best model selected by the BMA
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analysis was only slightly better than the next model, accounting for 6.0% and 5.6% of

the posterior probability, respectively. Thus the two models performed comparably. They

differed only in whether or not the positive coefficient hHalophytic Wetland was included.

Table 1.8: Best five negative binomial regression models of family density selected by
Bayesian Model Averaging. nVar: number of variables. BIC: Bayesian Information Cri-
terion. post prob: posterior probability.

Coefficient model 1 model 2 model 3 model 4 model 5
(Intercept) -1.3E+00 -1.4E+00 -1.4E+00 -1.2E+00 -1.5E+00
Sveg 1.9E-02 2.0E-02 2.1E-02 1.8E-02 2.2E-02
halpine -5.7E-01 -5.7E-01 -5.3E-01 -6.4E-01 -5.3E-01
Day 1.8E-02 1.8E-02 1.8E-02 1.8E-02 1.8E-02
hhemlock -6.4E-01 -6.3E-01 -6.2E-01 -6.0E-01 -6.1E-01
PA -1.4E-03 -1.3E-03 -1.3E-03 -1.8E-03 -1.2E-03
TO:PA 9.7E-05 9.7E-05 9.2E-05 1.0E-04 9.1E-05
NDVI *PA 1.1E-03 1.1E-03 1.7E-03 1.2E-03 1.7E-03
hhalophytic wetland . 8.3E-01 . . 7.9E-01
NDVI *E . . -1.4E-03 . -1.3E-03
E*PA . . . 3.6E-07 .
nVar 7 8 8 8 9
BIC -1080 -1079 -1078 -1078 -1078
post prob 0.06 0.056 0.033 0.027 0.025

Best Model Selected In the best model selected by the BMA analysis (R2
dev = 0.51, AIC

= 1267.4, Table 1.9), observed family density was most strongly related to vegetation species

density (Sveg), annual precipitation (PA), observed plot temperature (TO), NDVI (NDVI ),

Julian day (Day), and the habitat types alpine (halpine) and hemlock (hhemlock).

Family density was negatively related to PA and positively related to PA*TO and PA*NDVI ;

these terms were clearly the most important explanatory variables, accounting for most of

the deviance (35%) explained by the model. PA*TO was the most important of these terms.

Plotting predicted values of S versus PA at varying levels of TO and NDVI (Figures 1.14

and 1.15) showed that the relationship of S to PA became more strongly positive as either

TO or NDVI increased. In the best model, density was also positively related to Day, and

negatively related to hAlpine and hHemlock.



42

Table 1.9: Results of negative binomial regression model selected by BMA analysis. R2∗
deva:

see definition on page 30. PA: total annual precipitation. TO: observed plot temperature.
halpine and hhemlock: the alpine and hemlock habitat types. Sveg: vegetation species density.
Day: Julian day.

Estimate Std. Error Pr(>|z|) R2∗
deva

(Intercept) -1.3E+00 8.8E-01 1.4E-01 0.00
PA*TO 9.7E-05 1.1E-05 < 2e-16 0.19
PA -1.4E-03 1.6E-04 < 2e-16 0.09
halpine -5.7E-01 1.2E-01 3.0E-06 0.07
PA*NDVI 1.1E-03 1.7E-04 6.7E-10 0.07
Sveg 1.9E-02 4.6E-03 4.9E-05 0.04
Day 1.8E-02 5.2E-03 5.7E-04 0.03
hhemlock -6.4E-01 1.7E-01 2.5E-04 0.02
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Figure 1.14: Predicted family density vs. total annual precipitation at varying values of
observed plot temperature. The solid, dashed and dotted lines depict the predicted rela-
tionship at maximum (19.8°C), median (11.5°C), and minimum (1.5°C) values of observed
plot temperatures, respectively. All other variables were set at median values.
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Figure 1.15: Predicted family density vs. total annual precipitation at varying values of
NDVI. The solid, dashed and dotted lines depict the predicted relationship at maximum
(0.57), median (0.26), and minimum (-0.40) values of NDVI, respectively. All other variables
were set at median values.

Regression Analyses of Shannon’s Information Index

Bayesian Model Averaging Shannon’s Information Index, a composite measure of richness

and evenness, was positively related to Julian day, time of day, vegetation species density,

and NDVI (Table A.2). The relationship between Shannon’s Information Index and observed

plot temperatures was unclear based on the BMA analysis because of opposite signs on TO

and the interaction term Hour:TO. The terms Day, NDVI :Sveg, Hour:TO, TO and Hour

were included in at least 58.8% of models. All of these except for TO andHour were included

in at least 95% of models, indicating a high degree of certainty that relationships exist

between Shannon’s Information Index and these terms. The positive term hHalophytic Wetland

was also included in 46.6% of models.

Model Selection The five best models of Shannon’s Information Index all contained the

terms Day, NDVI :Sveg, and Hour:TO (Table 1.10). Three of these five best models also

included a positive hHalophytic Wetland term. The two best models performed similarly. The

best model accounted for 10.5% of the posterior probability, not much more than the 8.6%

accounted for by next best model.
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Table 1.10: Best five Gaussian ordinary least squares regression models of Shannon’s In-
formation Index selected by Bayesian Model Averaging. nVar: number of variables. BIC:
Bayesian Information Criterion. post prob: posterior probability. Day: Julian day. Hour:
time of day (hours since midnight). TO: observed plot temperature. NDVI : Normalized
Difference Vegetation Index. hhalophytic wetland: halophytic wetland habitat type. Sky: sky
condition.

Coefficient model 1 model 2 model 3 model 4 model 5
Intercept -3.5E+00 -3.5E+00 -5.0E+00 -5.0E+00 -4.2E+00
Day 3.6E-02 3.6E-02 3.5E-02 3.5E-02 3.1E-02
NDVI *Sveg 4.5E-02 4.6E-02 4.9E-02 5.0E-02 4.8E-02
Hour*TO 2.2E-02 2.1E-02 3.1E-03 3.0E-03 2.9E-03
TO -1.6E-01 -1.6E-01 . . .
Hour -2.0E-01 -2.0E-01 . . .
hhalophytic wetland . 1.0E+00 . 1.0E+00 1.1E+00
Sky . . . . -7.5E-02
nVar 5 6 3 4 5
r2 0.295 0.311 0.258 0.274 0.289
BIC -52.01 -51.61 -51.10 -50.79 -49.89
post prob 0.105 0.086 0.067 0.057 0.036

Best Model Selected Temporal variables appeared to be the most important variables for

explaining arthropod family diversity as measured by the composite diversity measure Shan-

non’s Information Index, although it was also related to NDVI, observed plot temperatures,

and vegetation species density. Shannon’s Information Index was most strongly related to

terms containing information about Julian day (Day), NDVI (NDVI ), time of day (Hour),

vegetation species density (Sveg) and observed plot temperature (TO). The best model se-

lected by the BMA analysis (R2 = 0.30, AIC = 296.88) was composed of the positive terms

Day, NDVI :Sveg and Hour:TO and the negative terms Hour and TO (Table 1.11). In this

model, Julian day explained almost as much of the variation (14%) as the other terms com-

bined (16%). The relationship between Shannon’s Information Index, Hour, and TO was

not simple (Figure 1.16). Predicted values of Shannon’s Information Index were highest for

the combination of late morning census times and high plot temperatures but also fairly high

for the combination of low plot temperatures and early census times. The model predicted

low values of Shannon’s Information Index on sites that were warm and visited early as well

as on plots that were cool and visited in the afternoon, but very few data points fell within

these regions of parameter space.



45

Table 1.11: Results of Gaussian oridanary least squares regression model selected by BMA
analysis. R2∗

a : see definition on page 30. Day: Julian day. Hour: time of day (hours since
midnight). TO: observed plot temperature. NDVI : Normalized Difference Vegetation Index.

Estimate SE Pr(>|z|) R2

(Intercept) -3.5E+00 1.1E+00 -3.2E+00 0
Day 3.6E-02 5.5E-03 6.5E+00 0.14
Hour -2.0E-01 7.0E-02 -2.8E+00 0.03
TO -1.6E-01 4.7E-02 -3.4E+00 0.00
Hour*TO 2.2E-02 5.8E-03 3.8E+00 0.06
NDVI *Sveg 4.5E-02 9.8E-03 4.6E+00 0.07
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Figure 1.16: Predicted values of Shannon’s Information Index over the range of values of
observed plot temperature and time of day. The surface of predictions are output of the best
model given median values of other variables. Grey circles represent observed combinations
of plot temperatures and time of day. The diameters of the circles are proportional to the
observed values of Shannon’s Information Index (H ′max = 2.6 and H ′min = 0.1).

Regression Analyses of the Berger-Parker Index

Bayesian Model Averaging Evenness (here measured as the inverse of dominance) was

consistently positively related to Julian day, the interaction of NDVI and vegetation species
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Table 1.12: Best five gamma regression models of the Berger-Parker Index selected by
Bayesian Model Averaging. nVar: number of variables. BIC: Bayesian Information Crite-
rion. post prob: posterior probability. Day: Julian day. Hour: time of day (hours since
midnight). TO: observed plot temperature. NDVI : Normalized Difference Vegetation Index.
hSnow: snow wetland habitat type. Sveg: vegetation species density. Sky: sky condition. E:
Elevation

Coefficient model 1 model 2 model 3 model 4 model 5
Intercept 2.4E+00 2.5E+00 2.0E+00 2.1E+00 2.1E+00
Day -1.1E-02 -1.1E-02 -9.1E-03 -9.5E-03 -9.2E-03
NDVI *Sveg -1.5E-02 -1.4E-02 -1.3E-02 -1.3E-02 -1.4E-02
TO*E . . -2.9E-05 -2.9E-05 -3.0E-05
TO*Hour -1.1E-03 -1.0E-03 . . .
hSnow . 5.3E-01 5.6E-01 5.5E-01 .
Day*E . . . 1.7E-06 1.8E-06
E . . 2.8E-04 . .
nVar 3 4 5 5 4
BIC -1054.00 -1054.00 -1054.00 -1054.00 -1054.00
post prob 0.026 0.021 0.021 0.021 0.02

density, and the interaction of observed plot temperatures and elevation (Table A.3). The

terms Day and NDVI *Sveg were included in at least 82.9% of selected models, indicating

a high degree of certainty that evenness was related to them. TO*E and TO*Hour were

also frequently included (61.9% and 48.8%, respectively). The coefficient of variation of the

BMA estimates was quite high, ranging from 0.40 for Day to 1.4 for TO*Hour.

Model Selection The best model was selected with a low degree of confidence. Several

models performed similarly, each model representing a very small portion of the posterior

probability (Table 1.12). The five best models each accounted for only 2.0–2.6% of the

posterior probability. These five models consistently included the terms Day, NDVI *Sveg,

and some interaction term involving TO.

Best Model Selected Evenness was positively related to Julian day and the interaction

terms Hour*TO and NDVI *Sveg in the best model selected (R2
dev = 0.20, AIC = 617.6,

Table 1.13). As in models selected for Shannon’s Information Index, Julian day was the

most important variable in terms of the amount of deviance explained (10% in the best

model). This model would predict greatest evenness (lowest dominance) when samples are
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taken late in June rather than early in June, later in the morning rather than early, when

temperatures are warm, and where productivity and vegetation species density are high.

Table 1.13: Results of gamma regression model selected by BMA analysis. Note that the
signs of coefficients are reversed in inverse gamma regressions so that a negative sign indicates
a positive relationship. R2∗

deva: see definition on page 30. Day: Julian day. TO: observed plot
temperatures. Hour: time of day (hours since midnight). NDVI : Normalized Difference
Vegetation Index. Sveg: vegetation species density.

Estimate SE Pr(>|z|) R2
deva

(Intercept) 2.4E+00 3.6E-01 6.8E+00 0.00
Day -1.1E-02 2.1E-03 -5.1E+00 0.10
TO*Hour -1.1E-03 2.9E-04 -3.7E+00 0.04
NDVI *Sveg -1.5E-02 3.3E-03 -4.6E+00 0.07

Comparison of Diversity Indices

Consistent Patterns Observed plot temperature, Julian day, NDVI, and vegetation species

density were positively related to all three diversity indices and were consistently included in

best models (Table 1.14). Through the progression from a completely richness-dominated

measure of diversity (S) to a measure of only dominance/evenness (d), the relative im-

portance of annual precipitation decreased and that of temporal variables increased. The

importance of temporal variables corresponded with the degree to which abundance con-

tributed to calculation of diversity indices.

Note that the diversity indices most influenced by temporal variables were those in which

abundance was taken into account.
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Table 1.14: Comparison of variables in regression coefficients most often chosen by BMA
analyses. Signs (+ and −) indicate signs of coefficients. The labels “Richness” and “Even-
ness” categorize the diversity indices based on the aspects of diversity they reflect. Asterisks
(∗) are used to point out variables that were included in the best models selected by BMA
analyses for all three diversity indices. S: family denisty. H ′: Shannon’s Information In-
dex. d: Berger-Parker index. Day: Julian Day. Sveg: vegetation species density. NDVI :
Normalized Difference Vegetation Index. Hour: time of day (hours since midnight). TO:
observed plot temperatures. PA: total annual precipitation (PRISM climate model). halpine
and hhelmock: the alpine and hemlock habitat types.

Richness
Evenness

Variable S H ′ d

Day +∗ +∗ +∗

Sveg +∗

NDVI *Sveg +∗ +∗

NDVI *PA +∗

TO*PA +∗

TO*Hour +∗ +∗

Hour −
TO −
PA −
halpine −
hhemlock −

Annual Precipitation Most of the points where extremely low diversity was observed re-

ceived high (> 500m) precipitation (Figure 1.17). The diversity indices H ′ and d could

not be calculated for points where no arthropods were collected (S = 0). In addition, if

only a single family was collected on a plot, then S = 1, d = 1, and H ′ could not be cal-

culated. For this reason, regressions of H ′ and d did not contain much information about

high precipitation sites, but regressions of S included the entire range of precipitation values

observed.
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Figure 1.17: Arthropod family density versus total annual precipitation.

The Hemlock Forest and Alpine Habitat Types Coefficients for these habitat types were only

included in models of S, but they were important terms in these models, accounting for a

substantial portion of the deviance (9%) explained by the best model. This indicated that

arthropod family density was lower for these habitat types than would have been expected

based on values of other variables.

The Halophytic Wetland Habitat Type Although this habitat type was not included in any

of the best models selected, it was included in nearly half of all models of S and H ′. The

relationship of diversity indices to this habitat type was always positive, indicating that

diversity in salt marsh habitat types was greater than would have been expected based on

other variables. This habitat type was represented by a single data point.

Regressions of Observed Temperatures and NDVI

Observed plot temperatures were positively related to the time of day and negatively related

to elevation. The best model selected by a BMA analysis of observed temperatures was a

simple model including the main effects E and Hour and the interaction term E*Day

(R2 = 0.36, Table 1.15). A positive relationship with Hour was most important in terms
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of the amount of variation explained (R2∗ = 0.18). Note that TA was not included in this

model.

Table 1.15: Results of regression of observed temperatures.

Estimate SE Pr(>|z|) R2∗

(Intercept) 5.154 8.689e-01 1.00e-08 0
E -6.353e-02 1.171e-02 1.35e-07 0.11
Hour 9.336e-01 1.079e-01 6.38e-16 0.18
E*Day 3.504e-04 6.861e-05 6.52e-07 0.07

The NDVI measure of productivity was negatively related to elevation and annual pre-

cipitiation, but since elevation and annual precipitation were strongly correlated (R = 0.83),

results of multivariate regressions were unstable. Coefficients for elevation and annual pre-

cipitation were the most important variables in BMA analyses in terms of the amount of

variance they explained and the frequency with which they were included in models, but

their values and signs varied widely depending on what other variables were included and

whether or not an intercept term was included. Simple regressions of NDVI versus E (β̂

= -2.75×10−4, p < 0.001, R2 = 0.28) and NDVI versus PA (β̂ = -2.47×10−4, p < 0.001,

R2 = 0.41) were much easier to interpret, each with negative coefficients explaining a sub-

stantial portion of the variation in NDVI.

Spatial Autocorrelation of Residuals

Spatial autocorrelation of residuals increased along the gradient from richness-dominated to

evenness-dominated diversity indices. The selected regression models of arthropod family

diversity explained all of the spatial autocorrelation of family density (S), but only some

of the spatial dependence of evenness (d). Residuals of the best model of arthropod family

density were not spatially correlated, residuals of the best model of Shannon’s Information

Index were not significantly positively correlated (though apparently slightly more spatially

correlated than residuals of the best model of S), and residuals of the best model of the

Berger-Parker index were positively spatially correlated (Table 1.16). Empirical variograms

of the residuals of family density and Shannon’s Information Index were flat at distances less

than about 100km (Figure 1.18), indicating no spatial autocorrelation at distances of at least

the 4.8km spacing between sampling points. The empirical variogram of the residuals from
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the model of the Berger-Parker index indicates a small amount of spatial autocorrelation

(up to about one sixth of the overall variance), becoming negligible at distances of about

40km.

Table 1.16: Spatial autocorrelation of residuals of diversity models: results of inverse-
distance-weighted Moran’s I tests. S: family density. H ′: Shannon’s Information Index. d:
Berger-Parker index. Higher values of I indicate stronger spatial autocorrelation. autocor-
relation. p > 0 is the p-value of the test, the probability of obtaining the observed value of
I under an assumption of no positive spatial autocorrelation.

Diversity Index Moran’s I p > 0
S -1.12 0.868
H ′ 1.38 0.084
d 2.13 0.017

S
em

iv
ar

ia
nc

e

● ● ● ● ● ●
●

●
●

●

●

●

●

0 50000 150000

0
2

4
6

8

S

se
m

iv
ar

ia
nc

e

● ● ● ● ●
● ● ● ●

●

●

●

●

0 50000 150000

0.
00

0.
10

0.
20

H'

Distance (m)

se
m

iv
ar

ia
nc

e ●

● ●
● ●

●
●

●
● ●

●

●

●

0 50000 150000

0.
0

0.
4

0.
8

d

se
m

iv
ar

ia
nc

e

Figure 1.18: Spatial autocorrelation of residuals of diversity models: empirical semivari-
ograms. S: family density. H ′: Shannon’s Information Index. d: Berger-Parker index.
Semivariance is essentially a variance between observed values at pairs of points separated
by some distance.

1.4 Discussion

Overview of the Fauna Collected

The composition of the fauna collected in this study was typical of North American boreal

forest and arctic tundra biomes and consistent with the arthropod fauna of Canada (Danks,

1979, 1988; Danks and Foottit, 1989) in that Diptera dominated. The biting flies, especially
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mosquitoes (Culicidae) were disproportionately super-abundant in the samples because they

were attracted to the collectors. Members of most other groups avoided being collected to

some degree or were stationary. Particularly agile and alert arthropods, such as dragonflies,

adult butterflies, and many flower flies (Syrphidae) evaded capture and were certainly under-

represented.

Hemiptera, especially aphids (Aphididae) were also quite abundant. This is consis-

tent with Werner (1983), who found that Hemiptera often represented a high proportion of

arthropod biomass relative to most other orders in boreal forests of interior Alaska. Perhaps

most noteworthy was the abundance of globular springtails (Collembola: Sminthuridae). I

have not found mention of the Sminthuridae being an especially abundant group on vege-

tation in our region.

It was clear that these samples best represent the arthropod fauna that tend to be present

on the surface of vegetation. For example, some common groups of beetles that live mainly

in litter (e.g., Carabidae), aquatic habitats (e.g., Dytiscidae and Hydrophilidae), or in wood

(e.g., Scolytinae and Cerambycidae) were seldom or never collected, while Cantharids, which

hunt on leaves of shrubs and herbs, were frequently collected.

Overview of Diversity Patterns

Clear patterns were discerned in the distribution of arthropod family diversity over the

KENWR. Observed athropod diversity at the scale of a 100m2 plot was influenced by local

climate, productivity, and time of sampling.

Seasonal Phenology, Daily Activity Patterns, and Temperature

As predicted, indices of observed arthropod diversity were strongly influenced by seasonal

phenology even in my three week June sampling window (June 7–30). That arthropod

diversity was increasing over this period suggests arthropod diversity had not passed its

seasonal peak. Note that, since no terrestrial arthropod species in this region is known

to be migratory, the observed seasonal phenology pattern was entirely an issue of detection

probability changing over time. The seasonal life history and activity patterns of arthropods

were such that the likelihood of collecting them was generally increasing over this sampling

window.
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I also found strong evidence for increasing arthropod activity of the daily sampling period

(from 04:40 to 10:54 hours). Most arthropods were apparently less active in the dusky, cool

early morning hours than in the warmer, sunny mid-morning hours. The observed pattern

is likely predominantly driven by increasing detection probabilities over the course of the

morning rather than actual changes in diversity driven by dynamics of immigration and

emigration. However, a small number of strong-flying groups, such as bumble bees, might

have shown daily patterns of immigration and emigration through their foraging efforts.

There are two explanations for why observed plot temperature (TO) was often included

in models while average annual temperature (TA) was rarely included. The first is an issue

of temporal scale: arthropods appeared to respond to changes in temperatures over the

course of a day. Plot temperatures observed at the time of sampling captured this among-

day and within-day variation, while average annual temperatures provided an estimated

summary of climate over the long term. Resident arthropods at the site likely responded

to increasing temperatures over the course of the day by increasing their activity, which

may have increased detection probabilities. The second reason is an issue of how well

the two different measurements of temperature represented the small plots: observed plot

temperatures were taken on the plots, so the spatial scale and spatial alignment matched the

plot size; estimates of average annual temperature were generalized over coarse 2 km grid

cells in which there may have been substantial variation in climate, especially in mountainous

terrain. In addition, predictions of average annual temperatures from the PRISM model may

have been inaccurate representations of local climate, especially considering that the PRISM

model predictions used here were made using data from a handful of climate stations in the

vicinity of the KENWR (see maps of input data for the PRISM model in Simpson et al.,

2005).

The indices that measured evenness, which took into account relative abundance, were

more influenced by temporal variables than indices that measured richness, which only con-

sidered presence or absence of taxa. It appeared that arthropods became more active and

could be more easily collected as local temperatures warmed (i.e., detection probabilities

generally increased with the hour of the day and with increasing temperature). Since detec-

tion probabilities could not be estimated from this dataset, it was not possible to distinguish

between increasing diversity or increasing detection probabilities with increasing observed
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temperatures. The correlation of temporal variables and observed temperatures as well

as the inclusion of temporal variables in models support the latter explanation, but it is

reasonable to infer that both are true.

Precipitation

A relationship with precipitation was observed for only one of the three diversity indices,

S, indicating that precipitation was related to richness, but not dominance/evenness. At

least part of the reason that annual precipitation was not included in models of H ′ and d

was the issue of calculability. Arthropod family density was often very low at these high

elevation, high precipitation sites so that observed S was 0 or 1. In this way, extremely

high precipitation seemed to act more as a predictor of whether or not arthropods would be

collected at all than a measure of diversity (although 0 and 1 are valid values of density).

The observed complicated relationships among family density, annual precipitation, ob-

served plot temperatures, and NDVI can be interpreted in light of the relationships of

climate and elevation on the KENWR. Observed temperatures and NDVI were generally

lowest at high elevations, where precipitation was highest. At these elevations, the observed

relationship between family density and annual precipitation was negative. Since most of

the precipitation at these high sites falls as snow, this may be interpreted as a negative re-

lationship between arthropod richness and increasing snow loads (climatic severity). When

observed temperatures or NDVI was high, the observed positive relationship of family den-

sity with annual precipitation agreed with my prediction. Places that were both wet and

warm or wet and productive had higher diversity of arthropods than places that were either

dry and warm or dry and less green.

Elevation

I found little support for a simple relationship between arthropod diversity and elevation in

full models of any of the three diversity indices. Although no direct relationships with eleva-

tion were found, climatic variables and NDVI were correlated with elevation so that diversity

was related to elevation indirectly. This could be interpreted as climate and productivity

being the more proximal causes of the observed patterns of diversity while elevation was

important in determining climate and resulting patterns of productivity.
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Productivity

There are several plausible reasons why productivity was a strong predictor of arthropod di-

versity: bias of the sweep net sampling method, relationships of NDVI to other variables, the

high resolution of NDVI data, and real relationships between arthropod diversity and vege-

tative productivity. Sweep net samples were clearly biased, yielding more arthropods where

there was plenty of green vegetation to sweep than where there was very little vegetation.

In this way, sweep net samples were more representative of the community of arthropods on

vegetation except tree canopies rather than a good representation of the total fauna of these

sites. NDVI measurements reflect a host of biologically relevant variables not directly mea-

surable by other means. Any factor that affects plant growth, such as soil type, drainage,

water availability, snow cover, fire history, and local climate, may be reflected in NDVI ob-

servations, so it is possible that observed arthropod values of diversity were related to one

or more of these variables for which NDVI was a surrogate rather than productivity causing

the observed arthropod diversity pattern. However, there was good reason to expect high

productivity to lead to high arthropod diversity based on the hypothesis of Wright (1983).

The hypotheses which predicted unimodal relationships of diversity to productivity would

predict simple positive relationships if only the increase phase of the curve was examined.

Since maximum observed values of NDVI in this dataset were only moderately high (based

on the scale of values listed by Myneni et al., 1997), this possibility cannot be ruled out.

There is in this dataset at least support for the existence of an overall positive relationship

between arthropod diversity and productivity over the landscape of the KENWR.

Based on the current analysis, it is difficult to distinguish between the competing

diversity-productivity hypotheses that predict monotonically increasing or unimodal pat-

terns. My results were consistent with the species-energy theory of Wright (1983). In-

vestigation of the species-productivity-area hypothesis of Rosenzweig (1995) would require

examination of how the size of patches changed with the productivity of patches, which

was not attempted here. The unusually low arthropod diversity of the structurally simple

(at least from 0-2m above the ground) hemlock and alpine habitat types and the explana-

tory power of vegetation species density support the habitat heterogeneity hypothesis of

Tilman (1982). However, the high arthropod diversity of the structurally simple and vege-

tatively monotonous halophytic wetland habitat type conflicts with this explanation. Other
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productivity-diversity hypotheses that were based on competition, predation, and distur-

bance (e.g., Leibold, 1996; Huston, 1979; Rosenzweig, 1995) could not be addressed with

the above analyses.

Vascular Plant Species Density

I predicted that arthropod diversity would increase with vascular plant species density be-

cause greater species diversity of vascular plants would provide more kinds of niches to be

occupied. I found that all indices of arthropod diversity increased with vascular plant species

density in both BMA analyses and single-variable regressions, supporting this hypothesis

and consistent with the results of Murdoch et al. (1972). However, it was not possible to

distinguish between this hypothesis and another explanation: arthropod family diversity

and vascular plant species density may be determined by the same underlying processes,

such as the aforementioned diversity-productivity and diversity-climate relationships.

The Hemlock Forest Habitat Type

While NDVI measurements were high for hemlock forests, measured arthropod diversity

was relatively low. In hemlock forests, the understory where sweep-net samples were col-

lected had sparse and uniform vegetation with low vegetation species diversity. Fewer than

the expected number of arthropod families were collected because vegetation density and

vegetation species diversity in the understory were low despite high observed values of NDVI.

The Alpine Habitat Type

There are three reasons why arthropod family richness was low in alpine habitats. The

seasonal phenology of vegetation in alpine sites was often far behind that of lower sites. The

vegetation had not yet greened up when many of the alpine sites were sampled in June.

Resident arthropods at these sites may have had similarly delayed phenologies. Mobile

arthropods, such as pollinators, would not visit these alpine sites until flowering occurred.

The low height and sparseness of vegetation on many alpine sites may also have reduced

the efficacy of sweep net sampling, with most alpine arthropods concentrated close the

substrate. The third possibility is that diversity was low in the alpine, probably due to
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climatic harshness of this biome and possible because of the relative structural simplicity of

this habitat type, which had few woody trees or shrubs.

The Halophytic Wetland Habitat Type

Arthropod diversity was greater in a salt marsh site than would have been expected based

on other variables. Although coastal salt marshes are not particularly productive in terms

of NDVI and the graminoid-dominated vegetative community is not diverse in terms of

species or structure, these habitats may support a diverse communities of arthropods, mainly

Diptera (Cheng, 1976). Part of the reason for the high observed diversity of this habitat

type had to do with the relative efficiency of the sweep net sampling method. The salt

marsh was dominated by Diptera, which appeared to be sampled quite well by sweep net.

Spatial Autocorrelation

Essentially all of the spatial autocorrelation in arthropod family richness was accounted

for by explanatory variables. However, not all of the spatial autocorrelation of domi-

nance/evenness was explained by these variables. This suggests that some part of the

variation in dominance/evenness of arthropods is related to a spatially autocorrelated vari-

able that was not considered in this analysis.

It should be noted that the methods used here tend to underestimate spatial autocor-

relation and, consequentially, overstate precision of regression parameter estimates. An

assumption of the regression models was that observations were independent. Spatial au-

tocorrelation reduces independence of observations, effectively reducing sample size and

precision of estimates. Such correlation of observations in regression models that assume

independence produces underestimates of standard errors of regression coefficients and con-

fidence intervals of predictions that are too narrow. Compared to the two-step approach

used here, model fitting methods that simultaneously estimate regression coefficients and

spatial parameters may result in larger confidence intervals for regression coefficients and

predictions, and they will often indicate a stronger influence of spatial autocorrelation.
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Prediction by Random Forest Regression

Where plot data, such as observed temperatures, were not available, the best predictor of

arthropod family density was habitat type as summarized by the vegetation classification

of O’Brien (2006). Arthropod family density was predicted to be highest in the halo-

phytic wetland habitat type, a habitat in which high family density was observed. This is

somewhat surprising considering that this habitat type had only moderate productivity (as

measured by NDVI), low vegetation species density, and little variation in vegetation struc-

ture. High diversity was also predicted in habitat types dominated by deciduous hardwoods

and shrubs, but it is unclear whether this was due to the generally high productivity of

these habitat types, high vegetation species richness, or differences in structural complexity.

Lowest arthropod diversity was predicted in barren, sparsely vegetated habitats, consistent

with the low productivity, relatively low vegetation species density, and simple structure of

these habitats.

Synthesis

It is generally accepted that the observed trends of diversity over latitudinal and elevational

gradients are not the results of latitude or elevation themselves, but rather of climate regimes

influenced by latitude and elevation. The broad spatial extent and large number of data

points where diversity data were collected as well as the availability of climate data over the

landscape allowed me to directly examine the relationships between diversity and climate

variables rather than looking at relationships with elevation as a surrogate for climatic gra-

dients. The results suggest that diversity is highest at the most favorable sites, characterized

by warm temperatures, high productivity, and high plant species diversity. Such sites may

support larger, more stable populations that are less prone to local extinction. This in turn

would allow diversity to accumulate in these sites. The most favorable sites seemed to be

defined not by any single variable, but by combinations of favorable conditions.

These findings are consistent with predictions of most of the diversity-latitude, diversity-

elevation, diversity-productivity, or arthropod diversity-vegetation diversity hypotheses; they

highlight the importance of the more proximal influences of local climate, productivity and

vegetative diversity and especially the importance of their interactions. They best supported
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the temperature and water availability hypothesis of McCain (2007) and the species-energy

theory of (Wright, 1983).

My results are consistent with the conclusions of Parmesan and Yohe (2003), who found

that climate variables were important for determining arthropod distributions. On the

KENWR, regional climate has become warmer and drier in the latter part of the 20th cen-

tury compared to long-term averages (Berg, 2000). Since arthropod richness was positively

related to temperature and generally negatively related to precipitation, it is difficult to

predict how arthropod diversity will respond to a generally warmer, but drier climate. Due

to the climatic constraints on the distributions of at least some species such as Carabid

beetles (Ashworth, 2001), these species would be expected to generally move up slope as the

climate warms. The expected warming and drying trend would also be expected to push the

elevation of maximum diversity up slope based on the diversity-climate model of McCain

(2007).

The effects of climate on individual species makes the influence of climate warming on

arthropod diversity difficult to forecast. Warming of the cold climate of the KENWR would

make this region more susceptible to successful invasion of exotic species from more tem-

perate regions. Although this may initially increase diversity, invasive species (including

non-arthropod taxa and diseases) could potentially disrupt native communities to the ex-

tent that native species would decline, decreasing diversity. Under changing climate, even

native species might alter their behavior enough to dramatically transform the character and

behavior of large areas. For example, warming temperatures over recent decades have en-

abled the native spruce bark beetle to kill essentially all mature white spruce trees over vast

areas of the KENWR (Berg, 2000). This in turn has changed regions of mature coniferous

forest, where fires were extremely rare, into grass-dominated woodlands characterized by

frequent, landscape-scale fires. Although the behavior of this relatively well-studied spruce

beetle might be somewhat predictable under expected climate regimes, hardly anything is

known about the biology of most arthropod species of the region, so it is not possible to

predict how most of arthropod diversity on the KENWR will respond to climate change.
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Concerns/Caveats

In terms of geographic extent, scale of plots, taxonomic breadth, and taxonomic resolution,

the methods of this present study differ from most other studies of arthropod diversity which

attempt to find relationships between arthropod diversity and environmental explanatory

variables. The most common methods involve narrower taxonomic breadth (often one or

two orders), higher taxonomic resolution (usually species), relatively large plots, few sites,

and a small area of inference. Bailey et al. (2004) appears to be the closest analogue of the

present study. They sampled butterfly species richness at 195 large sites over the extent

of a basin. Mac Nally et al. (2003) was another comparable study in which 49 relatively

large sites over the extent of a landscape were inventoried for Lepidoptera. In the present

study, taxonomic resolution and completeness of inventories at each site were sacrificed for a

higher number of sites at relatively low cost. The small plots corresponded with individual

pixels of raster grids, unlike Bailey et al. (2004) and Mac Nally et al. (2003), in which sites

covered many pixels so that summary statistics were calculated for each site. In this way

the design worked at a finer spatial resolution at a broad scale.

I desired to make inferences for as much of the arthropod fauna as possible, so the

taxonomic scope chosen was as broad as was feasible given available sampling methods,

literature and expertise. The sweep net sampling method was chosen because it could

be executed quickly and yielded a broad selection of arthropods. Still, since no single

method samples all groups well, taxonomic scope was limited by this choice. Many groups

of arthropods that do not normally inhabit standing vegetation (e.g., soil arthropods, aquatic

arthropods, and parasites of vertebrates) were rarely or never collected. Additional groups

were excluded for practical reasons described in the methods section.

Aside from complete inventories where a wide variety of methods would be employed

at each site over the duration of the growing season, accurate measurements of arthropod

diversity are not possible. Such complete inventories were not feasible over the LTEMP grid.

I chose methods to make the taxonomic scope as wide as possible given practical and logistic

constraints so that generalizations could be made for much of the arthropod fauna of the

KENWR. In doing so, taxonomic scope of this study was broader than in most studies of

arthropod diversity. This appears to be the only study of such broad scope over the extent

of a landscape.
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The coarse, family level resolution of this study was less than ideal. Higher taxonomic

resolution would have provided more information, possibly allowing more and stronger sta-

tistical relationships to be discerned. In cases where varying taxonomic resolutions have

been compared (e.g., Balmford et al., 1996; Bowman and Bailey, 1997; Marshall et al.,

2006), taxonomic resolution generally did not alter conclusions. Since the cost of identifica-

tions increases dramatically with finer taxonimic resolutions (Balmford et al., 1996; Marshall

et al., 2006), I chose a practical level of resolution.

In some ways a compromise was made between resolution and scope because many

specimens not identifiable at the species level (e.g., damaged and immature specimens)

were easily sorted to the family level. In this respect taxonomic breadth was increased at

the cost of lower resolution.

The sweep net sampling method was chosen because it sampled a broader taxonomic

scope than most other methods considered and it could be executed quickly. How this

affected taxonomic scope was discussed above. Another consequence was that conclusions

over the landscape, such as the observed relationships between arthropod diversity and

NDVI, should be interpreted in the light of potential biases. Since sweep net samples were

collected directly from the vegetation, it would be expected that more arthropods would

be collected from lush, thickly vegetated habitats than from sparse, barren habitats simply

due to differences in the amount of substrate sampled. In places where most arthropods

would be at ground level (e.g., barren gravel) or in tree canopies beyond the reach of nets,

sweep net samples were probably less representative of the arthropod community than at

sites dominated by thick, low vegetation.

No single method could have avoided such biases. The only way to gain a fairly complete

inventory at each site would have been to employ multiple complimentary methods (e.g.,

malaise traps, pitfall traps, UV light traps, and Berlese funnels) over the course of the field

season at each site, which would have allowed only a handful of sites (less than ten) to be

sampled because of the high cost of revisiting sites often and the extremely high yield of

these methods in terms of the number of specimens collected. Such methods would not have

allowed inferences over the extent of the landscape.

In many studies of diversity, detection probability (i.e., the probability that a taxon will

be scored as occuring at a site given that it was present) is implicitly assumed to be close to
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one or at least uniform across taxa, but such a condition is rarely the case (Boulinier et al.,

1998). Also, detection probabilities may vary among taxa, habitat type, or time (MacKenzie

et al., 2006).

In the present study, where a single, small sample was taken at each site over a broad tax-

onomic scope, detection probabilities among families probably varied greatly. Low detection

probabilies for some groups certainly influenced the results. For example, the family Acan-

thosomatidae (Hemiptera) is common and widespread on the landscape of the KENWR, but

it was seldom collected in sweep net samples, probably because of low detection probability.

Detection probability estimates could not be calculated since each site was sampled only

once. This means that what was modeled was not actual family diversity, but rather the

number of families collected in sweep net samples and shoud be intepreted as such.

In order to estimate detection probabilities, it is necessary to take multiple samples at

each site (MacKenzie et al., 2006) or to compare multiple sampling methods. Boulinier

et al. (1998); Dorazio and Royle (2005); Gelfand et al. (2003) illustrate different modelling

approaches to incorporating estimates of taxon-specific detection probabilities into models of

richness, but in all of these studies, multiple samples were taken at each site for estimation of

detection probabilities. The issue of detection probability will be addressed more thoroughly

in Chapter 2.
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Chapter 2

Monitoring of Terrestrial Arthropods on the KENWR

2.1 Introduction

In this chapter I assess the use of the sampling framework of the Long-Term Ecological

Monitoring Program (LTEMP) of the Kenai National Wildlife Refuge (KENWR) described

in chapter 1 for monitoring of arthropod distributions on the KENWR over the long-term.

Here I describe the reality of the impending re-distribution of species in response to current

and projected climate change and discuss some of the ramifications for the fate of species,

community assemblages, and ecosystem processes. I then introduce the proposed methods of

using LTEMP to monitor for changes in species distributions using presence/absence data.

I carry out analysis of proposed LTEMP sampling designs using simulated presence-absence

datasets and assess the utility of these designs for monitoring distributions of arthropod

species on the KENWR. I also identify characteristics of arthropods species that allowed

them to be monitored well using these methods and explore the usefulness of arthropod

taxa collected on LTEMP in 2004–2006 as potential monitoring metrics in the future.

Distribution shifts due to changing climate

Distribution shifts of species due to accelerated climate change are an emerging conservation

concern. Mobile species are already moving up-slope and pole-ward as the climate warms

(Gottfried et al., 1999; Parmesan, 1996, 2006; Parmesan et al., 1999; Parmesan and Yohe,

2003; Walther et al., 2002; Wilson et al., 2005). This is a response of organisms that have rel-

atively stable climatic constraints to a dynamic environment. These organisms are tracking

the areas that match their sets of climatic preferences, but this is not necessarily a directed

or intentional response of organisms to changing climate. For example, many terrestrial
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arthropods disperse more or less randomly. The net result of their random dispersal and

subsequent differential success results in distribution shifts (Ashworth, 2001).

As in the past, some areas will become refugia (Gottfried et al., 1999) while others will

serve as corridors (Hannah et al., 2002) as this process of re-distribution up-slope and pole-

ward continues. An important distinction between previous climate change and the current

warming is that current climate change is occurring faster than what has been typical, at

least over the last few millennia (Jansen et al., 2007). While the most vagile species, such

as birds, may respond rapidly, less motile species may not re-distribute themselves quickly

enough to track climate. Habitat loss and fragmentation of suitable habitat will further

exacerbate this problem, sometimes preventing species from moving to more suitable areas.

Many species are expected to be lost as this process continues unless actions are taken to

facilitate the re-distribution of species (Williams et al., 2005).

A result of this re-distribution will be the appearance of novel assemblages of species

(Hannah et al., 2002). As some species shift their distributions quickly, others will re-

spond slowly, and still others will be lost. In this process new community assemblages will

form. The functional properties of these communities will be difficult to predict due to

the complexity of interspecific interactions. The history of introductions of exotic species

offers numerous lessons on how a change in the distribution of even a single species can

have unpredictable consequences including extinctions and fundamental changes in ecosys-

tem functioning. For example, Old World earthworms introduced into deciduous forests

of northeastern North America reduce the thickness of forest litter and duff (Bohlen et al.,

2004), which is detrimental to native forest plants adapted to thick duff layers (Frelich et al.,

2006) and to members of the forest fauna (Migge-Kleian et al., 2006). This and other ex-

amples from our ever-growing experience with introductions of exotic species demonstrate

the severity of the consequences of re-distribution of species and the appearance of new

assemblages. Amelioration of the harsh climates of northern regions due to warming may

increase their susceptibility to successful invasion of exotic species, further contributing to

changes in community composition.
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Positioned as we are at the beginning of the re-distribution of species due to accelerating

climate change, the need for accurate documentation of current distributions of species and

subsequent monitoring of species distributions is increasingly being recognized (Guisan and

Thuiller, 2005; Magness et al., 2008).

Documenting species distributions

In its simplest form, documenting and monitoring species distribution only requires observ-

ing the presence of a species at multiple locations spread over the species’ potential range.

These kinds of presence-only datasets are the basis for most of the distribution information

available for the world’s biota. Presence-only data is suitable for establishing the limits of

species’ ranges.

Predictive methods based on ecological niches, such as BIOCLIM (Busby, 1991), can

make use of presence-only distribution data to predict the potential distribution of species

based on their observed climatic preferences. In order to do this, attributes of climate

must be measured over space so that observed presences of a species can be associated

with local climate characteristics. The climatic preferences of a species is inferred from the

characteristics of the places where it was observed. A map of the potential range of the

species can be generated by recognizing the areas on the map that fit a species’ inferred

climatic preferences. The limitations of these envelope methods are that they cannot express

how much of a species’ potential range is actually occupied by the species and that they are

ill-suited for monitoring change of species distributions over time.

Including information about both where a species is present and where it is absent allows

more detailed mapping of species distributions because inferences can be made about where

it does and does not occur within its potential range. There are numerous methods for

predicting species distributions based on presence-absence data such as regression, classifi-

cation, and computer learning methods. Predictions from these kinds of species distribution

models are usually expressed as probabilities of occurrence at a set of points.

Underlying these methods is an assumption of no measurement error in the response

variables, i.e., a species is assumed to be truly present where it is observed and truly absent

where it is not observed. As long as false negatives (i.e., failing to observe a species where it is

in fact present) are unlikely, predictions of species occurrence should be essentially unbiased.
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When false negatives become more likely, predictions of species distribution models will be

biased, predicting probabilities of occurrence lower than the true values. Therefore the

correct interpretation of these kind of predictions is that they represent a probability of

observing the species (a function of both distribution and detection), which may be quite

different from the species’ distribution. The converse problem of false positives, usually

caused by mis-identification, tends to a much smaller source of error in presence-absence

data than false negatives (MacKenzie et al., 2006) (but see Royle and Link, 2006, for methods

of accounting for false positives).

The issue of imperfect detection is particularly relevant in the context of monitoring. For

example, if the number of sites at which a species is observed to be present increases over

time, it is unclear whether (1) the species expanded its distribution or (2) the probability

of detecting the species increased due to increased abundance, changes in habitat types,

changes in seasonal phenology, etc. Unless detection can be assumed to be perfect (or at

least constant over the time period of interest), it is necessary to account for imperfect

detection in monitoring programs so that changes in the distributions can be distinguished

from changes in detection probability.

An extensive literature exists on this subject of accounting for imperfect detection (see

MacKenzie et al., 2006, for a review). Occupancy models explicitly account for imperfect

detection using repeated survey data to obtain unbiased (or at least much less biased)

estimates of presence/absence metrics (MacKenzie et al., 2003, 2006).

Occupancy models are a general class of parametric models that are used to estimate

the probability of occurrence of a species at a given site. They may also be used to estimate

proportion of an area or of a number of sites that is occupied by a species. Occupancy

models are similar to distribution models based on logistic regression in that the parameter

of interest is the probability of occurrence of a species at a site, the probability of occurrence

is related by a logistic link to a function of independent variables, and maps of distributions

can be generated by including spatially explicit independent variables.

Local rates of extinction and colonization (i.e., changes in distributions) are potentially

some of the most useful metrics for monitoring under climate change scenarios and species

introductions. These parameters can be used to monitor rates of spread of exotic species

or to monitor decreasing trends in distributions of species of conservation concern while ex-
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plicitly accounting for potentially dynamic detection probabilities. MacKenzie et al. (2003)

presented methods of estimating these parameters using occupancy models.

To obtain data suitable for occupancy modelling, each of a set of sites is surveyed for

a number of visits within a season, where a season is a time period of variable length

within which it can be assumed that the target species does not change its distribution.

At each site, a series of presences and absences is recorded as the site is revisited, yielding

an encounter history for each site. Alternatively, encounter histories can be obtained by

conducting multiple spatial surveys within a larger sampling cell. Both adequate spatial

presence/absence data and encounter history data are required in order to model species

distributions well and to monitor change in species distributions over time.

Monitoring species distributions on KENWR’s LTEMP

In order to monitor species distributions on KENWR using the LTEMP sampling frame-

work, I sought a sampling design, field techniques, and analytical methods most useful for

monitoring of arthropod species distributions over time. I considered two proposed sampling

designs, multiple sweep net samples at each site, and the use of program PRESENCE (Hines,

2007) for analysis.

LTEMP was designed to inventory, model distributions of, and monitor the flora and

fauna of KENWR over the long-term. A systematic grid of 327 points was distributed over

the KENWR at 4.8km intervals, of which 255 points did not fall on water or ice. Over the

field seasons of 2004–2006, all the 255 points were sampled for vascular and non-vascular

plants, breeding birds, and arthropods. The background, sampling design, and field methods

of LTEMP are described in more detail in Chapter 1.

The large sample size and nearly complete spatial coverage of LTEMP provided ample

presence/absence data for documenting species distributions on the KENWR. For example,

Magness et al. (2008) successfully modelled distributions of multiple bird species on the

KENWR. However, since each site was sampled only once in 2004–2006, detection prob-

abilities could not be estimated, so it was not possible to produce unbiased estimates of

species distributions. For this reason the models of arthropod family diversity in Chapter 1

are certainly underestimates because many of the arthropods included in that analysis are

commonly missed in sweep net samples (pers. obs.).
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In the future, LTEMP methods will account for imperfect detection. The most common

method of obtaining detection histories required for occupancy modelling is to visit each site

on multiple occasions within a season. However, making multiple visits is not compatible

with LTEMP methods. Since all sites are sampled by helicopter, the cost of revisiting the

sites within a season would quickly become cost-prohibitive. In addition, since LTEMP is

designed as a long-term monitoring regime, it is desirable to minimize damage to the sites.

Raising the number of visits would cause additional trampling and increase the likelihood of

introducing exotic species. For these reasons, KENWR’s managers plan to employ methods

that allow estimation of detection probabilities within single visits. For arthropods, I propose

taking two sweep net samples on each site. The 5.4m radius circular plots described in

Chapter 1 would be split in half along a north-south line, and a sweep net sample would be

taken over each semicircle. These two samples would constitute two spatial samples within

the larger plot that could be used to estimate probabilities of detection for each species

sampled.

After the complete census of all of the LTEMP sites over 2004–2006, the original mem-

orandum of understanding (MOU) between the US Forest Service’s Forest Inventory and

Analysis (FIA) program KENWR, which outlined LTEMP, called for sampling 20% of the

255 LTEMP sites every two years. This is a rotating panel design (interpenetrating panel

design) where each of the five panels is well-distributed across and representative of the

KENWR (Table 2.1). The advantages of the rotating panel design are (1) concurrent sam-

pling by FIA and LTEMP field crews provides optimal temporal proximity of the components

of the dataset; (2) each panel is representative of the KENWR as a whole; (3) estimates of

variables of interest are obtained on a frequent basis; and (4) over time, the sample size is

large with excellent spatial coverage, enabling modelling and monitoring of species distribu-

tions. The main disadvantage of this design is potentially poor precision of yearly estimates

due to the relatively small number of sites sampled each season. However, methods exist

for improving precision of estimators from rotating panel data by incorporating information

from previous seasons (Van Deusen, 1999, 2002).

A proposed alternative sampling design requiring the same overall amount of sampling

effort would be to perform a periodic census of all sites once every ten years (Table 2.1). In

the sample years, this design would yield more accurate estimates of parameters of interest
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than the rotating panel design because its sample size would be larger, but the cost would

be no information obtained for the nine intervening years.

Table 2.1: Tabular representation of proposed LTEMP sampling designs over 20 years. Each
row represents a panel of 51 sites. X’s (X) represent plots surveyed; dashes (-) indicate times
when sites were not surveyed.

Year 0 2 4 6 8 10 12 14 16 18

Design 1 X - - - - X - - - -
Rotating Panel - X - - - - X - - -

- - X - - - - X - -
- - - X - - - - X -
- - - - X - - - - X

Design 2 X - - - - X - - - -
Periodic Census X - - - - X - - - -

X - - - - X - - - -
X - - - - X - - - -
X - - - - X - - - -

At present, a few software packages are available for fitting occupancy models: PRES-

ENCE , MARK (White and Burnham, 1999), and WinBUGS (Thomas, 1994; Spiegelhalter

et al., 2003). Of these options, KENWR’s managers have proposed using PRESENCE for

analysis of LTEMP occupancy because there is a good precedence with use of this soft-

ware in occupancy literature; because it is quite flexible, allowing for diverse designs and

model types; and because it is the most intuitive of the available software options. This

latter concern is particularly important for a long-term program such as LTEMP, where

there may be turnover of personnel during the course of sampling. In this situation there

is strong motivation for making analyses as simple and consistent as possible, which is the

main reason KENWR’s managers selected PRESENCE for estimation of occupancy metrics

on LTEMP.

However, analyses will not necessarily be limited to program PRESENCE. The data

obtained from the proposed designs would be suitable for monitoring and modelling using

multiple methods. For example, a hierarchical model could be written that (1) models both

occupancy and detection as functions of covariates, (2) includes geospatially autocorrelated
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error terms, and (2) models the Markovian processes of extinction and colonization (see

Royle and Kéry, 2007; Royle et al., 2007, for examples).

Objectives

Objective 1: Evaluate proposed LTEMP sampling regimes for monitoring arthropod species

using occupancy methods. My first goal was to compare the performance of the two pro-

posed LTEMP sampling designs for obtaining unbiased species distributions (site-specific

estimates of occupancy, the probability of occurrence of a species at a site) within a single

season. My second goal was to compare the ability of these sampling designs to estimate

local rates of colonization over the short-term (sampling of two consecutive panels over four

years) and the long-term (two complete surveys of all the LTEMP panels over 20 years).

Objective 2: Evaluate arthropod taxa collected in LTEMP sweep net samples as potential

monitoring candidates. Given the performance of the LTEMP sampling designs for es-

timating occupancy metrics over time and the observed frequencies of arthropod taxa in

LTEMP samples, I sought to discern which arthropod taxa could be monitored well using

LTEMP methods.

2.2 Methods

Evaluating LTEMP monitoring designs

My general approach for evaluating LTEMP sampling regimes was to assess the performance

of the proposed designs through Monte-Carlo simulation. These simulations were designed

to answer the question of whether or not occupancy metrics could be estimated well; they

were not designed to actually model species distributions. In the same way that a mean

can be considered a special case of linear regression where there is only an intercept and an

error term, the simple occupancy models I used estimated only occupancy metrics (occu-

pancy, detection probability, and, in multi-season cases, rates of colonization and extinction)

without considering additional variables (e.g., possible covariates) that would normally be

included to produce species distribution models. These simulations were designed to answer

the questions of interest without unnecessary complexity.
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For each scenario considered, I (1) generated large numbers of simulated datasets that

conformed to proposed LTEMP monitoring designs and had known parameter values (2) fit-

ted occupancy models using program PRESENCE, and (3) compared the estimates obtained

by program PRESENCE to the known parameter values. I wrote R (R Development Core

Team, 2006) scripts to automate the process of generating datasets, writing input files for

program PRESENCE, executing PRESENCE over the command line, extracting results from

PRESENCE’s output files, and summarizing the results of large numbers of simulations.

Note that the way in which simulated data were generated and the way in which models

were subsequently fitted were appropriate for estimating the population parameters as op-

posed to the finite sample parameters, i.e., the plots at which observations were made were

a sample from a larger population, and estimates yielded would be estimates of population

parameters. This was in contrast to estimating occupancy of a finite population of plots.

Generating simulated data

I made datasets suitable for occupancy modeling using R. For a given set of scalar values of

occupancy (Ψ), detection probability (p), number of sites (n), and number of surveys (K),

I first generated a list of occupancy states at n sites by specifying that the occupancy states

at all sites were independently and identically distributed realizations of a Bernoulli process

with a rate of Ψ. I used the rbern() function in the Rlab add-on library (Boos et al., 2006)

to do this. Similarly, I specified that detections on each of the K revisits at the n sites were

independently and identically distributed realizations of a Bernoulli process with a rate of p.

Multiplying the detection states by the occupancy states yielded detection histories with the

specified parameter values of Ψ, p, n, and K. An example of an R function for generating

a simulated dataset is provided below.
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### Function for generating simulated detection histories.
generate.data <- function(psi, p, n, K)
{
### Load the Rlab package.
require(Rlab)
### Make an array of the right size to hold the data.
data <- array(data=NA, dim=c(n,K))
### Generate occupancy states at each site.
z <- rbern(n, psi)
for (i.K in 1:K)
{
### Generate detection states at each site.
b <- rbern(n, p)
### Multiply the occupancy states by the detection states.
data[,i.K] <- z*b
}

### Return the data.
data
}

Executing this function yields data of the form where rows represent sites and columns

represent surveys. An example of the execution of this function is provided below.

> generate.data(psi=0.5, p=0.8, n=5, K=4)
[,1] [,2] [,3] [,4]

[1,] 1 1 0 1
[2,] 0 0 0 0
[3,] 0 1 1 1
[4,] 1 1 1 1
[5,] 0 0 0 0

This is essentially the function used except that I modified it to generate large numbers

of datasets for multiple values of Ψ and p.

Multi-season data were generated by simulating the Markovian processes of colonization

and extinction over a specified number of seasons. For each site that was occupied at season

t, there was a probability ε that it would become unoccupied by season t+1; sites unoccupied

in season t had a probability γ of being colonized by season t + 1. The R code I used for

generating multi-season occupancy states is included below. In this code, occupancy is an

array of occupancy states with dimensions n (number of sites) and seasons (number of

seasons).
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occupancy <- array(data=NA, dim=c(n,seasons))
occupancy[,1] <- rbern(n, psi)
for (i.season in 2:seasons)
{
for (i.n in 1:n)
{
### Colonization
if (occupancy[i.n,i.season-1] == 0)
{
occupancy[i.n,i.season] <- rbern(1,gamma)
}

### Extinction
if (occupancy[i.n,i.season-1] == 1)
{
occupancy[i.n,i.season] <- 1 - rbern(1,epsilon)
}

}
}

Obtaining naïve estimates of occupancy

Naïve estimates of occupancy were calculated by counting the sites where a species was

observed on any survey and dividing that value by the total number of sites.

Fitting occupancy models using program PRESENCE

I fitted occupancy models through R code that generated input files from the simulated

datasets and invoked program PRESENCE over the command line. For each simulated

dataset, data and model structure text files of the format required by program PRESENCE

were created. PRESENCE was executed over the command line with a command like

> presence.exe i=input.pao l=output.pa2 name="model name" model=11c lmt=100 %

N=254 T=2 NPar=2

where i is the input file, l is the output file, name is a name for the model, model describes

model structure, lmt tells PRESENCE whether not to use a single season (lmt=100) or multi-

season (lmt=200) model, N is the number of sites, T is the number of surveys (T = K), and

NPar is the number of parameters to be estimated.

Results were extracted from the output files produced by these commands. The R scripts

used for generating simulated datasets, fitting occupancy models, and retrieving the results

are given in Appendix D.



74

Single-season scenarios

In order to assess the performance of the rotating panel and periodic census designs for

obtaining estimates of single-season occupancy states, I ran simulations under both proposed

sampling regimes. The only difference between these designs for a single season was the

sample size: n = 51 for the rotating panel design and n = 254 for the periodic census design.

I considered nine values of occupancy (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9) and the

same nine values of detection probability. For each combination of parameters, I generated

100 datasets (a total of 92 × 100 = 8,100 datasets). Using the same simulated datasets, I

obtained both naïve estimates of occupancy and estimates from program PRESENCE. I used

an occupancy model that assumes constant detection probability over time and across all

sites.

Short-term, multi-season scenarios

In multi-season scenarios, the number of variables (4) becomes too large to explore much

of the parameter space because the number of permutations quickly becomes intractable

(using similar methods as the single-season analysis, this would be (9 values)4 parameters×

100 simulations = 656, 100 simulations). In order to assess how the the rotating panel

design would perform over the short term (2 seasons or 4 years) for estimating local rates of

colonization and extinction, I chose to examine how a realistic pair of values of these change

parameters would be estimated over a wide range of values of Ψ and p. I set the local rate

of extinction to 0.1, the local rate of colonization to 0.05, and the number of seasons to two.

I considered the same set of values of Ψ and p used in the single-season simulations above.

Since sampling would take place every two years for the rotating panel design, the definition

of a season for this design was a two-year span.

For these and all other multi-season simulations, I chose a simple multi-season occupancy

model which considered p, ε, and γ to be constant over time (equation 2.1). In this model,

only the initial value of Ψ, Ψ1, is directly estimated; subsequent values can be estimated by

plugging values of Ψ1, ε, and γ into equation 2.1.

Ψt+1 = Ψt + (1−Ψtγ)−Ψtε (2.1)
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The periodic census design would yield no information over the short-term, so no short-

term analysis of this design was run.

Long-term, multi-season scenarios

Over the long-term, I was most interested in assessing how well the change parameters ε

and γ would be estimated. I wanted to know how long it would take for each design to yield

good estimates and to find the accuracy (or inaccuracy) of these estimates. I simulated

implementation of both designs over 20 years, two complete sweeps of the sample frame.

For the rotating panel design, I intentionally picked parameter values that were realistic

and easily estimated. I set initial Ψ to 0.7, p to 0.8, ε to 0.1, and γ to 0.05. I avoided using

values at the extremes of parameter space of Ψ and p, which likely would have led to a

high failure rate. I gave p a high value since single-season analyses demonstrated that these

occupancy models performed worst when detection probability was low. I picked realistic

values of ε and γ for a population in decline over 20 years.

Since the definition of a season differs between the two designs, they might yield quite

different values of ε and γ from the same populations over the same amount of time. In the

rotating panel design, ε is defined as the probability of local extinction over two years; in

the periodic census design, ε is the probability of local extinction over ten years. The latter

would always be expected to be larger than the former if ε for each year is greater than zero.

In order to compare the designs realistically, I calculated the values of ε and γ equivalent

to applying the values in the above analyses over the longer, 10-year season of the periodic

census design. I set Ψ = 0.7, p = 0.8, ε = 0.3709, and γ = 0.1854.

Dealing with convergence failures

Throughout the simulation analyses, program PRESENCE often yielded fitted values of zero

or one for either detection probability or occupancy parameters. When this occurred, it

appeared as if one parameter was fixed at either zero or one while fitting was performed on

the remaining variable, leading to erroneous results. I considered these instances failures.

Program PRESENCE also considered these instances failures, issuing the warning “numerical

convergence was not reached” in its output.
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The failure rate of a set of simulations was calculated by dividing the number of failed

simulations by the total number of simulations, expressed as a percentage. All other sum-

maries excluded results from simulations where PRESENCE failed to converge, summarizing

only simulations where PRESENCE converged successfully.

Evaluating Arthropod Taxa as Monitoring Candidates.

In order to determine which of the arthropod taxa collected in 2004–2006 could be monitored

well over the long term, I compared inferred occupancy and detection probabilities of these

taxa to the thresholds of occupancy and detection probability necessary for a taxon to

be monitored well on LTEMP. These thresholds were obtained from the above simulation

analyses.

Since occupancy metrics could not be directly estimated from 2004–2006 LTEMP data,

I was limited to inferring occupancy characteristics of arthropod taxa using their observed

frequencies. Because observed frequency is essentially the product of occupancy and detec-

tion probability, it could be inferred that taxa with high observed frequencies also had high

occupancy and high detection probability. However, low observed frequencies were ambigu-

ous because this could have been caused by low occupancy, low detection probability, or

both. For this reason, taxa with low occupancy and high detection probability (which could

be monitored with good accuracy) could not be distinguished from taxa with low detection

probability (which could not be monitored with acceptable accuracy).

2.3 Results

Evaluation of LTEMP monitoring designs

Single-season estimates

Program PRESENCE had a high failure rate, especially when detection probability (p) was

low (Figures 2.1 and 2.2, Tables C.1 and C.2). The rotating panel design had a much higher

failure rate, with an average of 24 failures out of every 100 simulations, than the periodic

census design, where an average of eight of every 100 simulations resulted in failures. The

failure rate was always highest (up to 98 failures out of 100 simulations for the rotating

panel design) when both occupancy (Ψ) and detection probability (p) were lowest. Program
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PRESENCE was most reliable when p was between 0.6 and 0.8 and Ψ was between 0.3 and

0.7.
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Figure 2.1: Failure rate of Program PRESENCE over a range of values of Ψ and p for the
rotating panel design. Values are the percentage of simulations in which PRESENCE failed.
Failures were defined as fitting of either Ψ or p with a value of 1 or 0. The colors of the
pixels are graduated so that white represents a value of 0 and saturated red represents a
value of 100%.
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Figure 2.2: Failure rate of Program PRESENCE over a range of values of Ψ and p for the
periodic census design. Values are the percentage of simulations in which PRESENCE failed.
Failures were defined as fitting of either Ψ or p with a value of 1 or 0. The colors of the
pixels are graduated so that white represents a value of 0 and saturated red represents a
value of 100%.

Naïve estimates of Ψ were nearly always biased low, with bias increasing as p decreased

(Figures 2.3 and 2.4, Tables C.3 and C.4). Only when detection probability was highest

(0.9) were naïve estimates nearly unbiased.
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Figure 2.3: Bias of naïve estimates of Ψ for the rotating panel design. The colors of the
pixels are graduated so that white represents a value of 0, saturated red represents a value
of 1, and saturated green represents a value of -1.
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Figure 2.4: Bias of naïve estimates of Ψ for the periodic census design. The colors of the
pixels are graduated so that white represents a value of 0, saturated red represents a value
of 1, and saturated green represents a value of -1.
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When Program PRESENCE did not fail, it produced generally unbiased estimates of

occupancy as long as detection probability was greater than 0.3 (Figures 2.5 and 2.6, Tables

C.5 and C.6). When p was less than 0.3, estimates of Ψ tended to be biased low. The

magnitude of bias was greatest when both Ψ and p were extremely low (0.1). At this

extreme of the parameter space, estimates of Ψ were highly variable when PRESENCE did

not fail. Program PRESENCE nearly always yielded less biased estimates of occupancy than

the naïve estimates.
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Figure 2.5: Bias of PRESENCE estimates of Ψ for the rotating panel design. The colors of
the pixels are graduated so that white represents a value of 0, saturated red represents a
value of 1, and saturated green represents a value of -1.
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Figure 2.6: Bias of PRESENCE estimates of Ψ for the periodic census design. The colors
of the pixels are graduated so that white represents a value of 0, saturated red represents a
value of 1, and saturated green represents a value of -1.

Standard deviations of all estimates of occupancy were higher for the rotating panel

design (Figure 2.7, Table C.9) than for the periodic census design (Figure 2.8, Table C.10)

For the rotating panel design, standard deviation was nearly always greater than 0.05; for

the periodic census design, standard deviation was generally less than 0.05 when detection

probability was greater than 0.6. In both cases, the value of occupancy had relatively little

influence on precision, which was determined mostly by detection probability. Estimates of

occupancy obtained from program PRESENCE were generally much less precise than naïve

estimates (Figures 2.9 and 2.10).
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Figure 2.7: Standard deviation of PRESENCE estimates of Ψ for the rotating panel design.
The colors of the pixels are graduated so that white represents a value of 0 and saturated
red represents a value of 1.
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Figure 2.8: Standard deviation of PRESENCE estimates of Ψ for the periodic census design.
The colors of the pixels are graduated so that white represents a value of 0 and saturated
red represents a value of 1.
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Figure 2.9: Standard deviation of naïve estimates of Ψ for the rotating panel design. The
colors of the pixels are graduated so that white represents a value of 0 and saturated red
represents a value of 1.
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Figure 2.10: Standard deviation of naïve estimates of Ψ for the periodic census design. The
colors of the pixels are graduated so that white represents a value of 0 and saturated red
represents a value of 1.
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Multi-season estimates: short term performance

For the rotating panel design, local rates of extinction and colonization could not be esti-

mated well over the short term. The failure rate of program PRESENCE was greater than

10% whenever detection probability was 0.3 or lower, but its failure rate was generally

negligible when detection probability was higher (Figure 2.11, Table C.11).
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Figure 2.11: Failure rate of program PRESENCE over 4 years for the rotating panel design.
Failures were defined as fitting of either Ψ or p with a value of 1 or 0. The colors of the
pixels are graduated so that white represents a value of 0 and saturated red represents a
value of 100%.

Estimates of the local rates of colonization and extinction were initially biased high

(Figures 2.12 and 2.13) and standard deviation of the estimates was essentially proportional

to the bias (Figures 2.14 and 2.15; Tables C.12 and C.14). Bias of ε ranged from 0.091 to

0.669; bias of γ ranged from 0.006 to 0.912.
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Figure 2.12: Mean bias of estimates of the rate of local extinction for the rotating panel
design over four years. The colors of the pixels are graduated so that white represents a
value of 0, saturated red represents a value of 1, and saturated green represents a value of
-1.
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Figure 2.13: Mean bias of estimates of the local rates of colonization for the rotating panel
design over four years. The colors of the pixels are graduated so that white represents a
value of 0, saturated red represents a value of 1, and saturated green represents a value of
-1.
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Figure 2.14: Standard deviation of the local rate of extinction for the rotating panel design
over four years. The colors of the pixels are graduated so that white represents a value of 0
and saturated red represents a value of 1.
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Figure 2.15: Standard deviation of estimates of the local rates of colonization for the rotating
panel design over four years. The colors of the pixels are graduated so that white represents
a value of 0 and saturated red represents a value of 1.

The periodic census design would provide no information over consecutive seasons.

Multi-season estimates: long term performance

The rotating panel design did not yield reasonable estimates of local rates of colonization

and extinction until some sites were visited twice, ten years into the sampling program.

After this point, estimates of these change parameters were generally quite good. Estimates

of occupancy were consistently unbiased (mean bias = 0.004), but not quite as precise as

the desired maximum standard deviation of about 0.05 (SD = 0.062).

Over time, the failure rate of program PRESENCE first rose dramatically from 0 at the

second year to 67% at the fourth year, then remained high until the tenth year, when some

sites were sampled a second time (Figure 2.16). After this point, the failure rate became

negligible.
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Figure 2.16: Failure rate of program PRESENCE over 20 years of the rotating panel design.
Values are the percentage of simulations in which PRESENCE failed. Failures were defined
as fitting of Ψ, p, ε, or γ with a value of 1 or 0.

Consistent with the short-term analysis above, estimates of the change parameters ε and

γ were initially biased high (Figures 2.17 and 2.18). Mean bias at the second year was 0.25

for ε and 0.61 for γ. This bias diminished slowly until the tenth year, when bias dropped

quickly as some sites were sampled a second time. By the twelfth year and subsquently,

estimates of these change parameters were essentially unbiased. After year twelve, precision

was still not as good as is desirable, with standard deviations of about 0.1.



89

5 10 15

0.
10

0.
20

0.
30

0.
40

Year

E
st

im
at

es
 o

f 
th

e 
Lo

ca
l R

at
e 

of
 E

xt
in

ct
io

n

●

●

●
●

●
● ● ● ●

Figure 2.17: Estimates of the local rate of extinction over 20 years for the rotating panel
design. Dashed line: true value (0.1). Circles and solid line: median of estimates with bars
spanning from 25% to 75% quantiles.
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Figure 2.18: Estimates of the local rate of colonization over 20 years for the rotating panel
design. Dashed line: true value (0.05). Circles and solid line: median of estimates with bars
spanning from 25% to 75% quantiles.
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The periodic census design yielded accurate estimates of local rates of colonization and

extinction (Figures 2.19 and 2.20). Estimates of both parameters were were unbiased (mean

bias was -0.0004 for ε and -0.0006 for γ) and acceptably precise (standard deviation was

0.041 for ε and 0.051 for γ). There were no convergence failures for this scenario.
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Figure 2.19: Estimates of the local rate of colonization over 20 years for the periodic census
design. Dashed line: true value (0.371). Circle: median of estimates with bars spanning
from 25% to 75% quantiles.
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Figure 2.20: Estimates of the local rate of colonization over 20 years for the periodic census
design. Dashed line: true value (0.185). Circle: median of estimates with bars spanning
from 25% to 75% quantiles.

Evaluation of arthropod taxa as monitoring candidates.

A minimum threshold of detection probability of about 0.5 was necessary for occupancy

to estimated with acceptable precision (standard error of about 0.05) for the single-season

estimates from the periodic census design (Figure 2.8), which is comparable to estimates of

occupancy yielded by either design over this term.

Of the families encountered, Aphididae, Braconidae, Culicidae, Ichneumonidae, Musci-

dae, Psyllidae, Simuliidae, and Sminthuridae were collected at ≥ 22% of sites. It is probable

that these groups had detection probabilities near 0.5, so they may be monitored well on

LTEMP. Culicidae, Aphididae, and Sminthuridae were the most frequently collected fam-

ilies, found on 76%, 60%, and 51%, respectively, of plots. It is almost certain that these

families could be monitored with good precision and accuracy on LTEMP since it is ex-

tremely unlikely that their detection probabilities are less than their observed frequencies.

Of the species identified on LTEMP at this point, only Sminthurus A (Christiansen and

Bellinger, 1998) (Sminthuridae), can be recognized as having high enough observed frequency

to infer that its detection probability must be high enough that it can be successfully studied.
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A Delphacid planthopper common on the KENWR, Javesella pellucida (Fabricius, 1794),

also had high detection probability (about 0.8) in sweep net samples similar to LTEMP

methods conducted in a small area on KENWR (unpublished data), so monitoring this

species should be possible using LTEMP methods. Species identifications have not yet been

made for most of the specimens represented in 2004–2006 LTEMP samples. The list of

species that can be monitored well using LTEMP methods will grow as more species are

identified.

2.4 Discussion

Evaluation of LTEMP monitoring designs

Based on my analyses, I recommend the rotating panel design over the periodic census

design for monitoring of species distributions on the Kenai National Wildlife Refuge. While

the periodic census offers greater accuracy, the rotating panel has the notable advantage of

yielding more frequent and up-to-date information on colonization and extinction. These

data will be critical for management decisions under climate change scenarios.

The main advantage of the rotating panel design is that it would enable frequent updating

of species distribution models and it would provide up-to-date estimates of colonization and

extinction. The only disadvantage of the rotating panel design is that it is not as precise

as the periodic census design, but it would be possible to improve precision of this design

by increasing the number of sweep net samples taken at each site. In occupancy models,

increasing the number of surveys is generally more effective for increasing precision than

increasing the number of sites by the same factor, especially when detection probability is

low (MacKenzie and Royle, 2005; MacKenzie et al., 2006). Increasing the number of sweep

net samples per site would certainly be more effective than increasing the number of sites

for sampling arthropods on LTEMP, where the number of surveys is at its minimum value

for estimating detection probabilities (K = 2), sample size is already large (n = 254), and

detection probabilities for most arthropod species are low. A statistical method that may

improve precision of the rotating panel design would be the application of mixed estimation

methods for estimation of parameters from rotating designs (Van Deusen, 1996, 1999, 2002)

to occupancy modelling, but this option has not been explored. For arthropods, accuracy of
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occupancy metrics may also be improved by incorporating information on relative abundance

as was done by Royle and Nichols (2003) since the sweep net samples yield data on relative

abundance. Because of these options for improving precision, the advantage of providing up-

to-date information far outweighs the rotating panel’s main disadvantage of inferior precision

compared to the periodic census design.

Neither monitoring design provided good estimates of short-term processes. Rates of

local extinction and colonization could not be accurately estimated because individual sites

were not resampled in consecutive years. Using the rotating panel design as proposed

above, a more appropriate parameterization for the first eight years of monitoring would

be to estimate a simple rate of change in occupancy rather than rates of colonization and

extinction. Alternatively, the rotating panel sampling design could be augmented with a set

of additional sites that would be sampled in consecutive seasons with the explicit purpose

of providing up-to-date estimates of rates of colonization and extinction.

A final argument recommending the rotating panel design over the periodic census design

is that data obtained from the rotating panel design can be binned by decade to be analyzed

in the same way as data from the periodic census design, achieving similar levels of precision.

In contrast, there is no way to analyze data from the periodic census design so that it acquires

the rotating panel’s advantage of providing frequently-updated information.

Software and failure rates

Program PRESENCE, as the proposed software package for monitoring occupancy on LTEMP,

would be suitable for monitoring occupancy metrics for species with detection probabilities

≥ 0.5. For species with lower detection probabilities or extremely low or high occupancy,

PRESENCE would generally not be satisfactory due to high failure rates. Fortunately, PRES-

ENCE issues warnings whenever these convergence failures occur, alerting the user that

results may not be reasonable. PRESENCE appears to be generally accurate whenever con-

vergence failures do not occur. (When I compared running some simple occupancy models in

MARK and PRESENCE, they always agreed to within rounding error, and they had identical

failure rates.)

A deficiency of PRESENCE for monitoring species distributions is that it is not predictive.

It is useful for estimating occupancy parameters and for hypothesis testing, but it has no
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built-in methods for making predictions over the landscape. In order to make distribution

maps from PRESENCE models, that portion of an occupancy model describing occupancy

as a function of covariates would have to be applied over the landscape using a geographic

information system (GIS) or programming language such as R.

For situations in which PRESENCE has a high failure rate, I recommend the use of

Bayesian occupancy models in WinBUGS, such as the code presented by MacKenzie et al.

(2006) and Royle and Kéry (2007). In my experience using these kinds of models, they yield

sensible estimates of occupancy metrics even at the edges of parameter space or when sample

size is small. In addition, a map of predictions with credibility intervals can be generated.

The flexibility of WinBUGS also allows for explicitly spatial modelling, for example with

geostatistically correlated error terms (e.g., Royle and Kéry, 2007).

Because of its ease of use, I recommend PRESENCE for monitoring of occupancy param-

eters and modelling distributions on LTEMP whenever it works well; wherever PRESENCE

tends to fail to converge, I recommend running occupancy models in WinBUGS because it

is less susceptible to this problem.

Evaluation of arthropod taxa as monitoring metrics

Any readily identifiable taxon that is not especially rare and is likely to be collected in

sweep net samples should be monitored well by LTEMP. Since detection probabilities could

not be estimated well from the 2004-2006 LTEMP dataset, choosing potential monitoring

candidates is problematic for all but the most frequently collected taxa. Taxa that may

have had high detection probabilities but low values of occupancy could not be distinguished

from taxa with low detection probabilities. The families which were frequently encountered

necessarily had detection probabilities at least as high as the observed frequencies, which

means that occupancy metrics for these groups could be estimated well given the proposed

sampling regimes.

The potential usefulness of the families Aphididae, Braconidae, Culicidae, Ichneumonidae,

Muscidae, Psyllidae, Simuliidae, and Sminthuridae, all of which had fairly high estimated

detection probabilities in sweep net samples, is discussed below.
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Aphididae Aphididae feed on juices of diverse plant hosts, including most deciduous trees

and shrubs, conifers, and herbs. Aphid populations may fluctuate wildly, with short gener-

ation times and high fecundity allowing explosive population growth under favorable condi-

tions (Dixon, 1977). Dense aphid infestations can adversely affect growth and reproduction

of host plants (Dixon, 1985). They are also vectors of plant viruses (Borror et al., 1989).

Aphids are important prey species for many arthropod predators and parasitoids, including

members Coccinellidae, Hemerobiidae, Chrysopidae, Coniopterygidae, Braconidae, Ichneu-

monidae, Syrphidae, and Chamaemiidae.

Although the family Aphididae were easily sorted from among the other arthropods, they

were often damaged, frequently immature, and difficult to identify to species. Aphididae are

also generally monophagous, each species feeding on a narrow range of host plants (Dixon,

1985), which would make information about Aphididae somewhat redundant with vegetation

data. For these reasons, potential monitoring of Aphididae would be most reasonable at

the coarse family resolution. Abundance of Aphididae may be an informative monitoring

metric because of their damage to plant hosts and because of their importance as prey for

many arthropod predators and parasites.

Braconidae Braconidae are parasitoids on diverse insects. Many of the Braconids repre-

sented in LTEMP sweep net samples were parasitoids of aphids.

Most Braconidae collected were identified to genera, and many were identified to species

by Dr. Michael Sharkey (University of Kentucky) and Dr. Petr Stary (Czech Academy of

Sciences, Czech Republic). Many of the identifications only to genera were due to taxo-

nomic issues that have yet to be resolved. No species was collected frequently enough to

be monitored well. Although monitoring of particular species with known parasitoid-host

relationships may be informative (particularly because many are parasites of Aphididae),

monitoring of Braconidae at the family resolution does not appear to be justified.

Cicadellidae Cicadellidae feed on juices of various vascular plants, mostly grasses, shrubs,

and herbs (Beirne, 1956). Some of the most common species present on the KENWR (e.g.,

Balclutha punctata) are generalists as adults, feeding on a variety of native and introduced

grasses. Cicadellidae are also vectors of plant diseases (Borror et al., 1989).
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Cicadellidae were easily sorted from among other families, and they tended not to be

damaged; but consistent species determinations would not be possible because many of the

LTEMP specimens of Cicadellidae were immature. Identifications of Cicadellidae to species

generally requires examination of adult males. Because they can often not be identified,

Cicadellidae may be best monitored at the family resolution. Since they occupy a similar

ecological niche as the Aphididae, information about the relative abundances of these groups

over time could be interpreted similarly.

Delphacidae Delphacids are sap-feeders, most of them feeding on graminoids. Most are

monophagous (Wilson, 1997), but some are generalists feeding on a variety of graminoid

species. Although many immature Delphacids were collected, adult males collected in

LTEMP sweep net samples were easily identified using available keys (e.g., Wilson, 1988)

and through the help of Dr. K. G. A. Hamilton (Agriculture and Agri-Food Canada, Ot-

tawa, Ontario, Canada). By far the most abundant species of Delphacid collected was

Javesella pellucida (Fabricius, 1794), a generalist on grasses with a holarctic distribution.

This well-studied species is a pest of cultivated grasses, mainly as a vector of plant diseases

(Mochida and Kisimoto, 1971). The usefulness of monitoring this species on the KENWR

is not apparent.

Culicidae As larvae, mosquitoes are filter feeders in a variety of fresh and brackish water

bodies as well as small pools and containers. Most adults feed on blood of vertebrates. Both

larvae and adults are prey for invertebrates and vertebrates.

Adult Culicidae can be reliably identified to species. Unfortunately the LTEMPmethods,

particularly the roughness of sweep net sampling and storage in alcohol, damaged most

Culicidae specimens so that they could not be identified with confidence. As long as these

methods are to be used, Culicidae could only be monitored at the family resolution. Relative

abundance of mosquitoes over time may have monitoring value since they are prey for birds

and bats.

Ichneumonidae Like the Braconidae, Ichneumonids are parasitoids of diverse insects. In

the LTEMP samples, Ichneumonidae appeared to be represented by many species, each

infrequently collected. Unfortunately, identification of most members of this large group is
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not feasible at present given the available expertise and literature. As with the Braconidae,

monitoring of Ichneumonidae at the family resolution is not justified, and probably no single

Ichneumonid species could be monitored well under LTEMP methods.

Muscidae The Muscids (including Fanniinae) often feed on decaying organic matter such

as dung or rotting plants. The Muscidae in the LTEMP samples appear to be represented

by quite a few species, each infrequently collected, but one species tentatively identified as

Fannia spathiophora appears to be fairly common. Muscids were often collected in large

numbers where present. Although good keys for this group exist (e.g., Chillcott, 1960;

Huckett, 1965; Huckett and Vockeroth, 1987), determinations were difficult for me in the

absence of a reference collection. I have not been able to obtain help with identifications of

specimens in this group.

Psyllidae The Psyllids feed on juices of plants. The two common genera encountered in

sweep net samples, Craspedolepta and Psylla are, respectively, monophagous on fireweed,

Chamerion angustifolium, or polyphagous on various species of willows, Salix spp. Iden-

tifications of adult Psyllids to species were generally possible using available keys (e.g.,

Hodkinson, 1978) and through the help of Dr. Robert Foottit.

Simuliidae Larvae of Simuliidae are filter feeders in flowing waters; the adults feed on the

blood of vertebrates. As with the Culicidae, Simuliids were attracted to the collectors. The

genera Simulium and Prosimulium have been identified from LTEMP sweep net samples.

A good key exists for species identifications (Adler et al., 2004), but I have not attempted

to key the species yet.

Sminthuridae Smithurids may feed on vascular plants (Hopkin, 1997), fungi (Borror et al.,

1989), or pollen (Kevan and Kevan, 1970). Possibly all of the Sminthuridae collected in

LTEMP sweep net samples comprise two species: Sminthurus sp. A and a Ptenothrix sp.,

although another species, Pseudobourletiella spinata (MacGillivray, 1893), has also been

collected on the KENWR in a sweep net sample in a separate project. The vast majority

of the Smithuridae present in the samples were determined to be Sminthurus sp. A by Dr.

Richard Snider (Michigan State University) (see Christiansen and Bellinger, 1998, for a key
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including this species). At least some species of Sminthurus feed on the tissues of living

vascular plants. I have collected Sminthurus sp. A on the dwarf shrubs Ledum palustre

L. and Empetrum nigrum L., but I have not been able to observe feeding. One species in

this genus, Sminthurus viridis, is an important pest of clover in Australia (Hopkin, 1997).

Species of Ptenothrix are often found on fungi (Borror et al., 1989). On KENWR, I have

collected Ptenothrix on lichens and on sporocarps of Russulaceae and Boletaceae. I have

witnessed feeding of Ptenothrix in the spore bearing tissues of a bolete.

The Sminthuridae present in the LTEMP samples can easily be sorted to family and

species, the three species so far collected on the KENWR being conspicuously morphologi-

cally distinct. The two species present in the sweep net samples are as yet undescribed, but

Richard Snider is presently working on a revision of this group (personal communication).

The Ptenothrix species may not be common enough (collected in about 10% of samples)

to be used as a monitoring metric, but Sminthurus sp. A, comprising almost all of the

Sminthuridae collected, could be monitored better than most families.

Even though they could be monitored with reasonable power, the value of Smithurids

species as monitoring metrics is not clear because biological interactions of Sminthuridae are

less well known than those of many other groups. Because of the abundance and ubiquity

of Smithuridae over the landscape of the KENWR, investigation into the biology of the

species, particularly their feeding preferences, is warranted.

Selection of taxa to be monitored As more species are identified from among the specimens

collected on LTEMP, many additional species will be recognized as having high enough

detection probabilities to serve as potential monitoring metrics. In 2007, KENWR staff

collected additional samples, as yet unprocessed, using spatial sub-sampling that will allow

estimation of detection probabilities. In addition, multiple surveys were conducted over

the season. Analysis of these samples will enable estimation of detection probabilities of

all arthropod taxa. To further broaden the scope of the taxa considered, identifications

may not be limited to classical morphological taxonomy. KENWR’s managers will consider

employing molecular methods such as DNA barcoding (e.g., DeSalle and Amato, 2004;

Ratnasingham and Hebert, 2007; Hajibabaei et al., 2007) so that even undescribed species

may be recognized.
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Even though particular arthropod species identified from LTEMP sweep net samples

may not appear to warrant particular attention on their own, it is of great interest to the

managers of the KENWR to monitor for the up-slope distribution shifts that are expected

in coming decades. The strength of the multi-species approach increases as more taxa are

included, so whole communities can be considered. Monitoring of arthropods, organisms

that may respond quickly to climatic stimuli through dispersal and differential success, may

prove to be particularly relevant in the context of climate change.

Given the limited amount of time and resources which could be spent on sorting and

identification of arthropods and that no taxon seemed much more useful than others as a

monitoring metric, I recommend that the species which are collected by sweep net with high

probability of detection and which can be most easily identified be considered for monitoring.

Based on my present experience, species of the families Delphacidae and Sminthuridae

generally meet these criteria. As identifications continue and as detection probabilities

become estimable, this list should grow considerably.

Conclusions

As proposed in 2004, the LTEMP sampling program served as an initial inventory of diverse

biota and provided ample spatial data for modelling species distributions. By accounting

for imperfect detection in the future, the LTEMP program will be poised to monitor change

in the distribution of species over time on the landscape of the KENWR (at least for species

with detection probability ≥ 0.5). This will allow managers of the KENWR to recognize

shifts in the distributions of species on the KENWR. Of the two proposed sampling designs,

I recommended the rotating panel design because it would provide more timely information

about distributions, local colonization, and local extinction. Although monitoring for dis-

tribution shifts was mostly discussed in the context of species’ response to climate, these

same monitoring methods should serve well for monitoring the spread of exotic species.
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Appendix A.

Full results of Bayesian Model Averaging analyses
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Appendix B.

Summary of arthropods collected

Table B.1: Frequencies and quantities of arthropod families collected. Note that additional
families were sorted (mostly Araneae, Nematocera, and Lepidoptera), but only the families
included in analyses are shown.

Class Order Family fj mj

Gastropoda 20

Arachnida 1,770
Acarina1 387
Araneae 1,361
Opiliones 22

Sclerosomatidae 0.027 22

Myriapoda 2
Lithobiomorpha 2

Lithobiidae 0.008 2

Parainsecta 1,066
Collembola 1,066

Entomobryidae 0.141 76
Hypogastruridae 0.004 7
Isotomidae 0.004 1
Sminthuridae 0.506 982

Insecta 12,278
Odonata 3

Coenagrionidae 0.012 3

Plecoptera 3
not sorted 2
Chloroperlidae 0.004 1

Orthoptera2 13
Acrididae 0.043 13

Continued on next page. . .

1Approximate. Many of these mites were phoretic on specimens of Diptera (particularly Muscidae) and
were difficult to count.

2All were immature.
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Table B.1 continued.

Class Order Family fj mj

Psocoptera3 64

Hemiptera 3,011
not sorted4 382
Acanthosomatidae 0.016 4
Achilidae 0.004 1
Anthocoridae 0.008 3
Aphididae 0.592 1,074
Cicadellidae 0.494 703
Delphacidae 0.184 241
Lygaeidae 0.031 11
Miridae 0.051 18
Nabidae 0.004 1
Psyllidae 0.251 573

Thysanoptera 91
not sorted5 55
Phlaeothripidae 0.004 1
Thripidae 0.086 35

Neuroptera 28
not sorted6 9
Chrysopidae 0.012 3
Coniopterygidae 0.016 6
Hemerobiidae 0.039 11

Coleoptera 143
not sorted7 22
Anobiidae 0.004 1
Cantharidae 0.125 67
Carabidae 0.004 1
Chrysomelidae 0.031 16
Coccinellidae 0.012 3
Curculionidae8 0.039 12
Elateridae 0.016 5
Lathridiidae 0.008 2

Continued on next page. . .

3All were immature.
4Immature specimens.
5Immature specimens.
6Immature specimens.
7Immature specimens.
8Includes Scolytinae.
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Table B.1 continued.

Class Order Family fj mj

Leiodidae 0.004 1
Lycidae 0.004 1
Pythidae 0.004 1
Scarabaeidae 0.004 1
Scirtidae 0.004 1
Staphylinidae 0.027 9

Diptera 8,074
not sorted9 2,530
Agromyzidae 0.082 55
Anisopodidae 0.016 4
Anthomyiidae 0.169 95
Anthomyzidae 0.047 21
Asteiidae 0.004 4
Bibionidae 0.114 85
Chamaemyiidae 0.020 10
Chloropidae 0.004 52
Clusiidae 0.004 1
Culicidae 0.761 3,697
Dolichopodidae 0.024 76
Drosophilidae 0.047 21
Dryomyzidae 0.004 1
Empididae10 0.345 212
Ephydridae 0.012 135
Heleomyzidae 0.047 20
Lauxaniidae 0.161 119
Micropezidae 0.008 3
Muscidae11 0.314 516
Otitidae 0.008 17
Phoridae 0.133 87
Pipunculidae 0.035 18
Psilidae 0.031 22
Rhagionidae 0.008 2
Scathophagidae 0.082 33
Sciomyzidae 0.075 29
Sepsidae 0.004 1
Simuliidae 0.224 134
Sphaeroceridae 0.047 27
Stratiomyidae 0.012 3

Continued on next page. . .
9Damaged material and several families of Nematocera.

10Includes Hybotinae.
11Includes Fanninae.
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Table B.1 continued.

Class Order Family fj mj

Syrphidae 0.075 33
Tabanidae 0.008 2
Tachinidae 0.024 7
Tephritidae 0.004 2

Trichoptera 4

Lepidoptera 168

Hymenoptera 675
not sorted12 21
immature Symphyta 150
Aphelinidae 0.004 1
Apidae 0.024 6
Argidae 0.004 2
Bethylidae 0.004 1
Braconidae 0.314 128
Ceraphronidae 0.008 2
Diapriidae 0.106 38
Dryinidae 0.031 9
Encyrtidae 0.024 7
Eulophidae 0.063 29
Eurytomidae 0.016 4
Formicidae 0.063 52
Ichneumonidae 0.345 181
Platygasteridae 0.024 8
Pteromalidae 0.047 12
Scelionidae 0.008 2
Tenthredinidae 0.059 17
Torymidae 0.020 5

Total 15,136
Analysis Total 9,961

12Damaged material.
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Appendix C.

Tabular results of simulations

Table C.1: Failure rate of the rotating panel design for a single season. Values are the
percentage of simulations in which PRESENCE failed. Failures were defined as fitting of
either Ψ or p with a value of 1 or 0.

p
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 98 85 71 50 27 17 13 24 40
0.2 85 62 38 16 10 3 2 2 13
0.3 86 59 22 10 1 0 0 1 2
0.4 88 48 15 13 1 0 0 0 1

Ψ 0.5 76 41 14 10 2 0 0 0 1
0.6 68 42 25 12 4 1 0 0 0
0.7 67 31 32 18 13 2 0 0 1
0.8 71 34 30 27 16 5 2 0 0
0.9 69 47 40 35 32 20 14 1 0

Table C.2: Failure rate of the periodic census design for a single season. Values are the
percentage of simulations in which PRESENCE failed. Failures were defined as fitting of
either Ψ or p with a value of 1 or 0.

p
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 65 39 13 0 0 0 0 0 2
0.2 60 20 0 0 0 0 0 0 0
0.3 44 8 0 0 0 0 0 0 0
0.4 39 13 1 0 0 0 0 0 0

Ψ 0.5 22 8 3 0 0 0 0 0 0
0.6 26 17 2 0 0 0 0 0 0
0.7 37 22 7 0 0 0 0 0 0
0.8 36 19 14 3 1 1 0 0 0
0.9 52 36 27 14 6 1 0 0 0
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Table C.7: Standard deviation of estimates of Ψ for the rotating panel design for a single
season, naïve estimates.

p
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.018 0.028 0.032 0.032 0.036 0.039 0.037 0.041 0.040
0.2 0.026 0.040 0.038 0.049 0.052 0.050 0.052 0.052 0.055
0.3 0.029 0.042 0.049 0.054 0.067 0.056 0.062 0.066 0.068
0.4 0.034 0.049 0.060 0.065 0.071 0.078 0.074 0.064 0.060

Ψ 0.5 0.037 0.047 0.058 0.066 0.066 0.072 0.070 0.070 0.075
0.6 0.045 0.054 0.063 0.067 0.070 0.076 0.072 0.062 0.063
0.7 0.050 0.056 0.066 0.069 0.070 0.069 0.066 0.069 0.060
0.8 0.051 0.061 0.070 0.066 0.078 0.071 0.056 0.062 0.057
0.9 0.056 0.061 0.078 0.069 0.067 0.065 0.052 0.047 0.038

Table C.8: Standard deviation of estimates of Ψ for the periodic census design for a single
season, naïve estimates.

p
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.010 0.010 0.015 0.015 0.017 0.018 0.019 0.017 0.019
0.2 0.012 0.015 0.019 0.020 0.020 0.025 0.025 0.023 0.024
0.3 0.014 0.019 0.025 0.024 0.025 0.033 0.027 0.027 0.028
0.4 0.017 0.022 0.026 0.028 0.029 0.030 0.030 0.032 0.026

Ψ 0.5 0.020 0.023 0.025 0.029 0.029 0.032 0.033 0.030 0.031
0.6 0.023 0.023 0.029 0.030 0.033 0.030 0.027 0.031 0.031
0.7 0.022 0.032 0.029 0.028 0.034 0.033 0.029 0.025 0.028
0.8 0.020 0.029 0.032 0.031 0.031 0.028 0.026 0.026 0.024
0.9 0.026 0.028 0.026 0.033 0.026 0.027 0.024 0.022 0.019
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Table C.9: Standard deviation of estimates of Ψ for the rotating panel design for a single
season, PRESENCE estimates.

p
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.000 0.044 0.075 0.051 0.050 0.046 0.044 0.037 0.037
0.2 0.047 0.082 0.079 0.118 0.093 0.089 0.082 0.057 0.052
0.3 0.058 0.171 0.165 0.163 0.135 0.118 0.076 0.068 0.067
0.4 0.128 0.161 0.193 0.147 0.135 0.119 0.084 0.069 0.061

Ψ 0.5 0.140 0.180 0.189 0.146 0.108 0.107 0.088 0.075 0.075
0.6 0.162 0.233 0.184 0.146 0.126 0.129 0.082 0.068 0.062
0.7 0.226 0.200 0.178 0.148 0.127 0.110 0.081 0.076 0.061
0.8 0.202 0.186 0.169 0.137 0.123 0.094 0.072 0.066 0.058
0.9 0.219 0.175 0.148 0.115 0.076 0.076 0.058 0.055 0.077

Table C.10: Standard deviation of estimates of Ψ for the periodic census design for a single
season, PRESENCE estimates.

p
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.420 0.150 0.064 0.056 0.048 0.027 0.021 0.018 0.017
0.2 0.136 0.124 0.120 0.059 0.042 0.030 0.029 0.025 0.025
0.3 0.127 0.150 0.114 0.065 0.045 0.038 0.030 0.031 0.031
0.4 0.200 0.175 0.152 0.079 0.045 0.039 0.035 0.036 0.032

Ψ 0.5 0.192 0.181 0.095 0.089 0.059 0.045 0.038 0.031 0.029
0.6 0.206 0.149 0.110 0.086 0.063 0.043 0.040 0.029 0.030
0.7 0.194 0.146 0.121 0.080 0.064 0.054 0.035 0.030 0.028
0.8 0.183 0.131 0.107 0.077 0.065 0.057 0.041 0.035 0.039
0.9 0.171 0.099 0.078 0.071 0.048 0.048 0.031 0.028 0.018
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Table C.11: Failure rate of the rotating panel design over four years. Values are the per-
centage of simulations in which PRESENCE failed. Failures were defined as fitting of either
Ψ or p with a value of 1 or 0.

p
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 82 68 39 21 6 2 2 7 17
0.2 78 53 18 4 1 0 0 0 5
0.3 79 31 10 0 0 0 0 0 0
0.4 67 26 9 5 0 0 0 0 0

Ψ 0.5 61 30 5 4 1 0 0 0 0
0.6 53 27 15 6 1 0 0 0 1
0.7 52 33 18 7 1 1 0 0 2
0.8 58 49 36 17 5 2 0 0 7
0.9 50 45 43 46 31 12 8 4 12
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Table C.12: Bias of estimates of ε for the rotating panel design over four years, PRESENCE
estimates.

p
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.670 0.440 0.331 0.315 0.369 0.424 0.473 0.554 0.669
0.2 0.494 0.370 0.316 0.426 0.461 0.512 0.588 0.683 0.772
0.3 0.424 0.353 0.407 0.450 0.513 0.559 0.593 0.624 0.645
0.4 0.384 0.400 0.415 0.456 0.473 0.518 0.540 0.581 0.576

Ψ 0.5 0.359 0.357 0.395 0.425 0.393 0.412 0.446 0.435 0.457
0.6 0.395 0.335 0.293 0.330 0.329 0.333 0.343 0.339 0.409
0.7 0.367 0.302 0.244 0.238 0.258 0.247 0.258 0.246 0.306
0.8 0.394 0.284 0.223 0.166 0.135 0.173 0.193 0.176 0.172
0.9 0.323 0.220 0.159 0.091 0.116 0.097 0.085 0.096 0.113

Table C.13: Standard Deviation of estimates of ε for the rotating panel design over four
years, PRESENCE estimates.

p
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.303 0.359 0.288 0.246 0.207 0.165 0.176 0.197 0.222
0.2 0.344 0.269 0.174 0.153 0.113 0.121 0.100 0.118 0.131
0.3 0.301 0.207 0.158 0.118 0.109 0.089 0.088 0.116 0.129
0.4 0.281 0.186 0.129 0.121 0.096 0.090 0.081 0.091 0.152

Ψ 0.5 0.242 0.163 0.169 0.112 0.135 0.121 0.090 0.082 0.099
0.6 0.214 0.188 0.161 0.143 0.115 0.104 0.086 0.084 0.100
0.7 0.219 0.187 0.167 0.137 0.121 0.095 0.090 0.108 0.151
0.8 0.187 0.172 0.156 0.147 0.118 0.102 0.083 0.086 0.126
0.9 0.185 0.144 0.144 0.121 0.099 0.103 0.082 0.078 0.072
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Table C.14: Bias of estimates of γ for the rotating panel design over four years, PRESENCE
estimates.

p
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.006 0.019 0.046 0.069 0.049 0.062 0.051 0.064 0.095
0.2 0.024 0.105 0.142 0.146 0.147 0.149 0.145 0.190 0.193
0.3 0.070 0.217 0.210 0.243 0.226 0.225 0.268 0.270 0.278
0.4 0.128 0.219 0.301 0.316 0.342 0.333 0.350 0.383 0.399

Ψ 0.5 0.205 0.35 0.378 0.392 0.45 0.447 0.431 0.445 0.453
0.6 0.201 0.395 0.465 0.515 0.500 0.516 0.529 0.547 0.640
0.7 0.278 0.415 0.534 0.544 0.539 0.613 0.640 0.608 0.710
0.8 0.245 0.442 0.545 0.500 0.578 0.699 0.750 0.681 0.731
0.9 0.317 0.492 0.561 0.522 0.664 0.765 0.650 0.826 0.912

Table C.15: Standard deviation of estimates of γ for the rotating panel design over four
years, PRESENCE estimates.

p
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0.032 0.080 0.071 0.090 0.074 0.060 0.066 0.069 0.070
0.2 0.057 0.162 0.141 0.140 0.099 0.103 0.071 0.063 0.056
0.3 0.078 0.171 0.179 0.138 0.102 0.077 0.069 0.062 0.075
0.4 0.187 0.162 0.174 0.122 0.103 0.092 0.081 0.074 0.093

Ψ 0.5 0.177 0.199 0.176 0.113 0.124 0.091 0.064 0.065 0.099
0.6 0.141 0.214 0.138 0.102 0.090 0.094 0.095 0.104 0.16
0.7 0.211 0.204 0.137 0.133 0.109 0.129 0.108 0.112 0.216
0.8 0.159 0.191 0.132 0.152 0.174 0.125 0.124 0.152 0.292
0.9 0.222 0.160 0.148 0.188 0.131 0.132 0.270 0.163 0.136
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Appendix D.

R code used for running occupancy simulations using program PRESENCE

The R code I wrote for generating simulated occupancy data and fitting models using

program PRESENCE is included below. There are two scripts: a single-season script and

a multi-season script. These scripts were saved as text files and loaded into R using R’s

source() function. Percent symbols (%) mark line breaks imposed to fit the script within

the margins of the page.

Single-season simulations

### Functions to run simulations through program PRESENCE.
### Matthew Bowser
### 27-VIII-2008

### Function to generate simulated data.
generate.data <- function(n, K, psi, p, nsims)
{
require(Rlab)
l.psi <- length(psi)
l.p <- length(p)
l.K <- length(K)
data <- array(data = NA, dim = c(n, K, l.psi, l.p, l.K, nsims))
for (i.psi in 1:l.psi)
{
for (i.p in 1:l.p)
{
for (i.K in 1:l.K)
{
for (i.nsims in 1:nsims)
{
zz <- rbern(n, psi[i.psi])
for (i.i.K in 1:K[i.K])
{
bb <- rbern(n, p[i.p])
data[, i.i.K, i.psi, i.p, i.K, i.nsims] <- zz*bb
}

}
}

}
}

data
}

### Functions to run PRESENCE, fitting occupancy models to the data.
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### Function to make .pao data files.
make.pao <- function(data, data.file) ### Data has to be a two-dimensional %

array with dimensions n and K.
{
n <- length(data[, 1])
K <- length(data[1, ])
line1 <- c(n, K)
write(line1, data.file, ncolumns=2, append=FALSE, sep="\t")
write(t(data), data.file, ncolumns=2, append=TRUE, sep="\t")
pars <- c(0, 0, K)
write(pars, data.file, ncolumns=1, append=TRUE, sep="\t")
write("TITLE:test", data.file, append=TRUE)
site <- rep("site", n)
num <- 1:n
sites <- cbind(site, num)
write(t(sites), data.file, ncolumns=2, append=TRUE, sep=" ")
seasons <- rep(1, K)
visits <- 1:K
surveys <- cbind(seasons, visits)
write(t(surveys), data.file, ncolumns=2, append=TRUE, sep="-")
### I think it is a data checksum, but I do not know how to generate it.
write(1514, data.file, append=TRUE)
}

### Funciton to run 100 simulations for a given set of (scalar) values of n, %
K, psi, and p.

run.PRESENCE <- function(data, working.directory, PRESENCE.directory, %
file.root) ### Data has to be a three-dimentional array with dimensions n, %
K, and nsims.

{
### File names.
data.file <- paste(file.root, ".pao", sep="")
dm.file <- paste(file.root, ".dm", sep="")
out.file <- paste(file.root, ".pa2.out", sep="")
nsims <- length(data[1, 1, ])
### Making an array to hold the results.
results <- array(NA, dim=c(2, nsims))
### Going for it.
for (i.nsims in 1:nsims)
{
### Make a data file.
setwd(working.directory)
make.pao(data[, , i.nsims], data.file)
### Making the design matrix file.
setwd(working.directory)
write("", dm.file)
### Run PRESENCE.
setwd(PRESENCE.directory)
n <- length(data[, 1, 1])
K <- length(data[1, , 1])
command <- paste("presence.exe i=", working.directory, "/", data.file, %
" l=", working.directory, "/", out.file, " name=\"simple model\" %
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model=11c lmt=100 N=", n, ", T=", K, ", NPar=2, TSpecific=0", %
sep="")

system(command = command, wait=TRUE)
setwd(working.directory)
output <- scan(file=out.file, what=character())
cc <- match("(Psi)", output)
dd <- match("p", output)
results[1, i.nsims] <- as.numeric(output[cc + 2])
results[2, i.nsims] <- as.numeric(output[dd + 8])
}

results
}

### Function that takes care of iterating through all the values of n, K, %
psi, and p and fitting the models to the simulated data.

run.PRESENCE.sims <- function(data, nsims, working.directory, file.root, %
PRESENCE.directory)

{
l.psi <- length(data[1, 1, , 1, 1, 1])
l.p <- length(data[1, 1, 1, , 1, 1])
l.K <- length(data[1, 1, 1, 1, , 1])
### Making an array to hold the results.
results <- array(data = NA, dim = c(l.psi, l.p, l.K, 2, nsims))
### Running PRESENCE.
for(i.psi in 1:l.psi)
{
for (i.p in 1:l.p)
{
for (i.K in 1:l.K)
{
results[i.psi, i.p, i.K, , ] <-
run.PRESENCE(data = data[ , , i.psi, i.p, i.K, ], %
working.directory, PRESENCE.directory, file.root)
}

}
}

results
}

### Master function that calls everything else.
run.sims.array <- function(n, K, psi, p, nsims, working.directory, %

file.root, PRESENCE.directory)
{
t <- proc.time()[3]
### Go to the working directory.
setwd(working.directory)
### Generate data and save it.
data <- generate.data(n, K, psi, p, nsims)
save(data, file=paste(file.root, "data.roj", sep=""))
### Run the simulations and save the results.
results <- run.PRESENCE.sims(data, nsims, working.directory, file.root, %

PRESENCE.directory)
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save(results, file="results")
s <- proc.time()[3] - t
gg <- length(K) * length(psi) * length(p) * nsims
kk <- n*K
print(paste("It took", round(s, 1), "seconds to run", gg, "simulations, %

each simulation including", kk, "observations."))
print(paste("That means it took about", round(s/gg, 3), "seconds per %

simulation."))
setwd(working.directory)
}

Multi-season simulations

### Function to generate data.
generate.multiseason.data <- function(n, K, seasons, psi, p, epsilon, %

gamma, panel)
{
### Make sure the Rlab package is loaded.
require(Rlab)
### Generating initial occupancy states.
occupancy <- array(data=NA, dim=c(n, seasons))
occupancy[, 1] <- rbern(n, psi)
for (i.season in 2:seasons)
{
for (i.n in 1:n)
{
### Colonization
if (occupancy[i.n, i.season-1] == 0)
{
occupancy[i.n, i.season] <- rbern(1, gamma)
}

### Extinction
if (occupancy[i.n, i.season-1] == 1)
{
occupancy[i.n, i.season] <- 1 - rbern(1, epsilon)
}

}
}

### Generating potential observations.
observations <- array(data=NA, dim=c(n, K, seasons))
for (i.seasons in 1:seasons)
{
ps <- array(data=rbern(n*K, p), dim=c(n, K))
observations[, , i.seasons] <- ps * occupancy[, i.seasons]
}

### Making a panel structure of the right size.
use.panel <- array(data=panel, dim=c(n, seasons))

use.observations <- observations
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for (i.seasons in 1:seasons)
{
for (i.n in 1:n)
{
### Want to refer to a location
if (use.panel[i.n, i.seasons] == 1)
{
use.observations[i.n, , i.seasons] <- observations[i.n, , i.seasons]
}

else
{
use.observations[i.n, , i.seasons] <- "."
}

}
}

### Output.
use.observations
}

### Function to make .pao data files.
make.pao.multi <- function(data.file, data, n, K, seasons)
{
data.eh <- array(data=data, dim=c(n, K*seasons))
line1 <- c(n, K*seasons)
write(line1, data.file, ncolumns=2, append=FALSE, sep="\t")
write(t(data.eh), data.file, ncolumns=K*seasons, append=TRUE, sep="\t")
pars <- c(0, 0, K)
write(pars, data.file, ncolumns=1, append=TRUE, sep="\t")
write("test", data.file, append=TRUE)
site <- rep("site", n)
num <- 1:n
sites <- cbind(site, num)
write(t(sites), data.file, ncolumns=2, append=TRUE, sep=" ")
seasons.list <- 1:seasons
K.list <- 1:K
surveys <- cbind(expand.grid(K.list, seasons.list)[, 2], expand.grid(K.list, %

seasons.list)[, 1])
write(t(surveys), data.file, ncolumns=2, append=TRUE, sep="-")
### I think it is a data checksum, but I do not know how to generate it.
write(8000, data.file, append=TRUE)
}

### Function to make .dm files.
make.dm.multi.constants <- function(dm.file, K, seasons)
{
list.pars <- 0:5
l <- rep(NA, 4)
l[1] <- 2
l[2] <- seasons
l[3] <- l[2]
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l[4] <- K*seasons + 1
l[5] <- 0
l[6] <- l[5]
e <- c(rep(2, 4), rep(0, 2))
dimensions <- cbind(list.pars, l, e)
seasons.list <- 1:seasons
K.list <- 1:K
surveys <- cbind(expand.grid(K.list, seasons.list)[, 2], expand.grid(K.list, %

seasons.list)[, 1])
ss <- rep(NA, K*seasons)
for (i.surveys in 1:(K*seasons))
{
ss[i.surveys] <- paste(surveys[i.surveys, 1], surveys[i.surveys, 2], %
sep="-")

}
write(dimensions[1, ], dm.file, ncolumns=3, append=FALSE, sep=" ")
write("-, a1,

psi1, 1, ", dm.file, append=TRUE)
write(dimensions[2, ], dm.file, ncolumns=3, append=TRUE, sep=" ")
write("-, b1, ", dm.file, append=TRUE)
for (i.seasons in 1:(seasons-1))
{
line <- paste("gam", i.seasons, ", 1, ", sep="")
write(line, dm.file, append=TRUE)
}

write(dimensions[3, ], dm.file, ncolumns=3, append=TRUE, sep=" ")
write("-, c1, ", dm.file, append=TRUE)
for (i.seasons in 1:(seasons-1))
{
line <- paste("eps", i.seasons, ", 1, ", sep="")
write(line, dm.file, append=TRUE)
}

write(dimensions[4, ], dm.file, ncolumns=3, append=TRUE, sep=" ")
write("-, d1, ", dm.file, append=TRUE)
for (i.ss in 1:(K*seasons))
{
line <- paste("P[", ss[i.ss], "], 1, ", sep="")
write(line, dm.file, append=TRUE)
}

write(t(dimensions[5:6, ]), dm.file, ncolumns=3, append=TRUE, sep=" ")
}

### Now need a function to run PRESENCE.
call.presence <- function(PRESENCE.directory, working.directory, data.file, %

dm.file, out.file, n, K)
{
command <- paste("presence.exe i=", working.directory, "/", data.file, " %

l=", working.directory, "/", out.file, " name=\"simple model\" %
model=2000", " j=", working.directory, "/", dm.file, " lmt=200", %
sep="")

setwd(PRESENCE.directory)
system(command = command, wait=TRUE)
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setwd(working.directory)
command
}

### Function to transform untransformed estimates back to their original scale.
untrans <- function(aa)
{
bb <- exp(aa)/(exp(aa) + 1)
bb
}

### Function to extract results.
extract.results <- function(out.file)
{
output <- scan(file=out.file, what=character())
A1 <- match("A1", output)
psi <- untrans(as.numeric(output[A1 + 3]))
B1 <- match("B1", output)
gamma <- untrans(as.numeric(output[B1 + 3]))
C1 <- match("C1", output)
epsilon <- untrans(as.numeric(output[C1 + 4]))
D1 <- match("D1", output)
p <- untrans(as.numeric(output[D1 + 3]))
results <- array(data=c(psi, p, epsilon, gamma), dim=4)
results
}

### Now need master function to call all the others.
run.multi.sims <- function(n, K, seasons, psi, p, epsilon, gamma, %

panel, nsims, file.root, PRESENCE.directory, working.directory)
{
setwd(working.directory)
### First need to make something to hold all of the data.
multi.sims <- list(n=n, K=K, seasons=seasons, psi=psi, p=p, %

epsilon=epsilon, gamma=gamma, panel=panel, nsims=nsims)
multi.sims$data <- array(data=NA, dim=c(n, K*seasons, nsims))
### Make the .dm file.
dm.file <- paste(file.root, ".dm", sep="")
make.dm.multi.constants(dm.file=dm.file, K=K, seasons=seasons)
### Make an array to hold the results.
multi.sims$results <- array(data=NA, dim=c(4, nsims))
### Go for it!
for (sim in 1:nsims)
{
### Generating data.
multi.sims$data[, , sim] <- generate.multiseason.data(n=n, K=K, %
seasons=seasons, psi=psi, p=p, epsilon=epsilon, gamma=gamma, %
panel=panel)

### Making .pao file.
data.file <- paste(file.root, sim, ".pao", sep="")
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make.pao.multi(data.file=data.file, data=multi.sims$data[, , sim], n=n, %
K=K, seasons=seasons)

### Running PRESENCE.
out.file = paste(file.root, sim, ".out", sep="")
call.presence(PRESENCE.directory=PRESENCE.directory, %
working.directory=working.directory, data.file=data.file, %
dm.file=dm.file, out.file=out.file, n=n, K=K)

### Extracting and storing the results.
multi.sims$results[, sim] <- extract.results(out.file=out.file)
}

multi.sims
}

### Example of use.
#panel <- array(data=c(1, 1, 0, 0, 0, 0, 1, 1), dim=c(4, 2))
#test <- run.multi.sims(n=4, K=2, seasons=6, psi=0.8, p=0.8, %

epsilon=0.1, gamma=0.2, panel=panel, nsims=10, #file.root="test01",
#PRESENCE.directory="C:/Program Files/PRESENCE", %

working.directory="C:/tmp/20081006multiseason")
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